How do you analyze Likert scale data? Likert scales are the most broadly used method for scaling responses in survey studies. Survey questions that ask you to indicate your level of agreement, from strongly agree to strongly disagree, use the Likert scale. The data in the worksheet are five-point Likert scale data for two groups.
Likert data seem ideal for survey items, but there is a huge debate over how to analyze these data. The general question centers on whether you should use a parametric or nonparametric test to analyze Likert data.
Read my post that compares parametric and nonparametric hypothesis tests.
Most people are more familiar with using parametric tests. Unfortunately, Likert data are ordinal, discrete, and have a limited range. These properties violate the assumptions of most parametric tests. The highlights of the debate over using each type of test with Likert data are as follows:
- Parametric tests assume that the data are continuous and follow a normal distribution. Although, with a large enough sample, parametric tests are valid with nonnormal data. The 2-sample t-test is a parametric test.
- Nonparametric tests are accurate with ordinal data and do not assume a normal distribution. However, there is a concern that nonparametric tests have a lower probability of detecting an effect that actually exists. The Mann-Whitney test is an example of a nonparametric test.
What is the best way to analyze Likert scale data? This choice can be a tough one for survey researchers to make.
Which Test is Better for Analyzing Likert Scale Data
Studies have attempted to resolve this debate once and for all. Unfortunately, many of these studies assessed a small number of Likert distributions, which limits the generalizability of the results. Recently, more powerful computers have allowed simulation studies to meticulously analyze a broad spectrum of distributions.
In this post, I highlight a study by de Winter and Dodou*. Their study is a simulation study that assesses the capabilities of the Mann-Whitney test and the 2-sample t-test to analyze five-point Likert scale data for two groups. Let’s find out if one of these statistical tests is better to use!
The investigators assessed a group of 14 distributions of Likert data that cover the gamut. The computer simulation generated independent pairs of random samples that contained all possible combinations of the 14 distributions. The study produced 10,000 random samples for each of the 98 combinations of distributions. Whew! That’s a lot of data!
The study statistically analyzed each pair of samples with both the 2-sample t-test and the Mann-Whitney test. Their goal is to calculate the error rates and statistical power of both tests to determine whether one of the analyses is better for Likert data. The project also looked at different sample sizes to see if that made a difference.
Comparing Error Rates and Power When Analyzing Likert Scale Data
After analyzing all pairs of distributions, the results indicate that both types of analyses produce type I error rates that are nearly equal to the target value. A type I error rate is essentially a false positive. The test results are statistically significant but, unbeknownst to the investigator, the null hypothesis is actually true. This error rate should equal the significance level.
The 2-sample t-test and Mann-Whitney test produce nearly equal false positive rates for Likert scale data. Further, the error rates for both analyses are close to the significance level target. Excessive false positives are not a concern for either hypothesis test.
Regarding statistical power, the simulation study shows that there is a minute difference between these two tests. Apprehensions about the Mann-Whitney test being underpowered were unsubstantiated. In most cases, if there is an actual difference between populations, the two tests have an equal probability of detecting it.
There is one qualification. A power difference between the two tests exists for several specific combinations of distribution pairs. The difference in power affects only a small portion of the possible combinations of distributions. My suggestion is to perform both tests on your Likert data. If the test results disagree, look at the article to determine whether a difference in power might be the cause.
In most cases, it doesn’t matter which of the two statistical analyses you use to analyze your Likert data. If you have two groups and you’re analyzing five-point Likert data, both the 2-sample t-test and Mann-Whitney test have nearly equivalent type I error rates and power. These results are consistent across group sizes of 10, 30, and 200.
Sometimes it’s just nice to know when you don’t have to stress over something!
Reference
*de Winter, J.C.F. and D. Dodou (2010), Five-Point Likert Items: t test versus Mann-Whitney-Wilcoxon, Practical Assessment, Research and Evaluation, 15(11).
The Likert scale is widely used in social work research, and is commonly constructed with four to seven points. It is usually treated as an interval scale, but strictly speaking it is an ordinal scale, where arithmetic operations cannot be conducted. There are pros and cons in using the Likert scale as an interval scale, but the controversy can be handled by increasing the number of points. Several researchers have suggested bringing the number up to eleven, on the basis of empirical data. In this article the authors explore this rational and share the same view, but simulate artificial data from both symmetrical normal and skewed distributions where the underlying metric is known in advance. Results show that more Likert scale points will result in a closer approach to the underlying distribution, and hence normality and interval scales. To increase generalizability social work practitioners are encouraged to use 11-point Likert scales from 0 to 10, a natural and easily comprehensible range.
Source: https://www.tandfonline.com/doi/abs/10.1080/01488376.2017.1329775#:~:text=The%20Likert%20scale%20is%20widely,arithmetic%20operations%20cannot%20be%20conducted.
Dr. Schumann
While I think the article I cite is conclusive in showing that you can use t-tests to analyze Likert data, I have to admit that I do not like Likert data. It seems to create problems unnecessarily from an analysis stand point. I love the suggestion of using an 11-point Likert scale. It’s been a longstanding recommendation that when you have discrete data with at least 10 values, you can generally treat it as continuous data. That fits in with the study you cite. Thanks for sharing! I’ll read it with great interest!
Dear Jim
With regard to your reply to Brenda on October 13, 2020 at 12:57 pm , yo said “I’d imagine that if your sample size is large enough, ANOVA should be fine because it’s a generalization of the t-test. ”
But we know in statistics that in order to apply ANOVA you should fulfill 4 assumptions, one of them is the scale of data must be interval. Likert scale scores are not interval (Ordinal)? so you explain that
Hi,
As you hopefully read about in this post, there has been much debate over how to analyze Likert scale data. Some thought nonparametric was the way to go while others thought parametric tests (such as t-tests and ANOVA) would be ok. All hypothesis tests have assumptions. However, some assumptions are more stringent while others can be waived. For example, the normality assumption is one that can be waived for many parametric tests when you exceed a relatively small sample size. Simulation studies are useful for determining the degree to which assumption violations affect hypothesis test decisions.
As you point out, one of the assumptions for t-tests and ANOVA is that the data are continuous. Clearly, Likert data violate that assumption. However, the simulation study I cite in this post finds that this violation does not affect the results much at all. The conclusion of the study is that t-tests and Mann-Whitney tests are nearly equivalent for comparing groups of Likert scores. In other words, this study finds that t-test results are valid even though the data use an ordinal scale. I recommend you read the original article I cite if you still have questions.
Unfortunately, I don’t have a study that shows that the same results apply to ANOVA. However, because ANOVA is an extension of t-tests, I’d assume that the same findings apply. Indeed, an ANOVA that compares two groups produces identical results as a 2-sample t-test. I would feel more confident about that if I had a study which assessed ANOVA and Likert data directly. However, I strongly suspect it’s true.
I hope that clarifies it for you!
Greetings Jim
I am a doctoral candidate researching 2 groups-home school students and public students in the US. The dependent variable is a “motivation” score obtained from participants when they respond to a 28 question survey -The Academic Motivation Scale (AMS) by Vallerand. This is a 7 point like scale. I am confused as to what SPSS tests I should run. The research question is:
What, if any, statistically significant difference exists in self-determination index scores between public school and homeschooled students as measured by The Academic Motivation Scale that includes intrinsic motivation, extrinsic motivation, and amotivation subscales.
I intend to only calculate the mean score of each participant and then calculate the mean score of each group (homeschool and public school).
I would appreciate any suggestions that you can share with me. Thank you
Sincerely
Melody Herb
Hi Jim!
I just want to ask, we are looking for the effectiveness of Social media as an aid to News and information for the students, we have 10 questions 8 of those are answered through (Strongly Agree, Agree, Neutral,Disagree,Strongly Disagree) 1 is (Facebook, Twitter, Instagram, YouTube) and last is their Age (18-21, 22-25)
What kind of formula can we use to measure their answers through likert scale? or in SPSS?
Thank you in advance!
Hi Jim,
I am assessing awareness of cancer among patients. I used 5 point Likert like scale and h responses were strongly agree, agree, unsure, strongly disagree and agree. I would like to assess the awareness between various socio-demographic factors such as age, agender, socio-economic status, education etc., Now do I have to first divide the awareness as binary – high and low awareness and and then do contingency tables or what do you suggest and do I have to use logistic regression as well.
Thank you,
Priya
Hi Priya,
The nature of your dependent variable isn’t clear to me, so I can’t really answer. Is your DV the five point Likert scale item, binary awareness, or something else?
Dear Sir, I am working on a topic effect of covid-19 on Secondary Schools using Likert four point. Which statistics test is better? Should l pair de means and compare them? Reply. Thanks Smart, Nigeria
Hello Jim,
Thank you for the great article!
I am doing my first research project and I am having trouble with the analysis.
I used a 5-point scale (with only two end labels 1:not descriptive and 5:descriptive – numbers 2,3, and 4 had no labels associated with them) on a within-subjects study looking at 11 watches and asking the participants (n=20) to rate how well a set of 20 personalities (adjectives) described each watch. The 20 personalities came from a product personality scale that was published in a journal.
My goal is to find at least 4 watches that have distinct personalities (I will use these in another study).
In SPSS, I ran 19 paired t-tests between the personality with the highest average rating (ex. cheerful) and the remaining 19 personalities (ex. interesting, relaxed, serious, cute, lively, modest, etc). I determined that a watch’s personality was the combination of personalities that were not* statistically significantly different (i.e. p>0.05) to the personality with the highest average rating. So for example, a watch ended up being cheerful, relaxed, cute, and lively.
Is this procedure acceptable for determining the personalities that describe each watch?
I think this process is okay, but I am not sure how to explain that it is okay…
If this process is not acceptable, what process do you recommend?
I sincerely appreciate your advice!!
Kind regards,
Laura
P.S. I am sorry for the long message. In general I am also struggling with the lingo in statistics so I figured I be thorough with the information I provided to you.
Hi
I was involved in problems like that. What I’ve done myself is to get the average of those questions related to a given subject as long as all of them has the same Likert scale. The resultant average though quantitative, can then be classified to the same Likert scale and therefore, you get a trend of the whole story.Since, in most of these questionnaires the number of respondents is somewhat high, far beyond 30, I analyse them all as quantitative variables.
I hope that would help.
Hi Jim!
I am research student I want your little help related to statistical test suggestions. My research topic is comparative analysis on visualizations so I performed tasks on it and filled questionnaire (five-Likert scale). I divided 100 participants data into two groups. Now I am confused which statistical test should apply on it. Kindly guide me on it.
Thank You In Advance.
Hi,
You should be able to legitimately perform either a 2-sample t-test or a Mann-Whitney test. The study I reference in this post indicates that either test is valid.
Eh sorry for the mistake, so the Q1+Q2= 3+4=7, so the total practice score is 7?
Yes, that sounds correct. Summing Likert items makes them more like continuous data.
Hi Sir, I’m Choi Aera from Malaysia, I’m so confuse to calculate the total practice score for each respondent. For example,
(strongly disagree=1, disagree=2, neutral=3, agree=4, strongly agree = 5)
Q1= i feel responsible to dump the rubbish in the bin.
Q2= i think preventive measures of environmental pollution should be tighten by laws.
Respondent 1 (he/she answer) : Q1= 3 Q2= 4, total practice score=Q1+Q2= 5.
Does this a correct way to calculate the total practice score?
….
I saw some articles calculated total practice by giving 0 score for (strongly disagree/disagree), 1 score for neutral and 3 score for ( agree/strongly agree).
And how about the scoring when you decided your own fix answer for that question. For example my fix answer for Q1 is strongly agree=5, so if respondent answer other than that i should give them a acore recording to the likert scale score or if the respondent answered strongly disagree, then should i just give him/her 0 for the incorrect answer or 1 score according to likert?
So basically I am so confused which one is the correct way to calculate the total practice/attitude/knowledge that use more than 3 likert scale.
Hi Jim,
I have benefitted immensely from the knowledge shared by you, may God continue to bless you with deeper insight statistically. I need clarity on recoding 5 point Likert scale to dichotomous variable. I did my recoding thus, Strongly agree (5) and agree (4) = 1; while strongly disagree (1), disagree (2) and neutral (3) = 0. Is there anything wrong with this recoding? Can you assist with any relevant literature specifically on recoding? —- Samgab
I love your website, it is very informative. Good job!
Thank you very much!
Dear Jim,
Your site is incredibly helpful, congratulations. I am working on the data analysis for my dissertation, I have surveyed school principals and my data consists of Likert scale items (5-point scale) for four different categories which I am interested in, the first one consists of 10 items, the second of 6 items, the third of 6 items, and the fourth of 6 items. I am interested in running ANOVAs for in order to determine if there is a difference in responses between groups (e.g. elementary schools, middle schools, high schools). First, would it be better to find the mean of the responses, or the sum in order to run the test? Second, what is the best way to test the assumptions for normality and homegeneity for Likert scale data? What assumptions are critical to test before running the statistical test?
Thank you, in advance, for your help.
Brenda
Hi Brenda,
This is a bit of a tricky issue. As I write in this post, there has a been a longstanding debate about the best methods to test Likert scale data. When you have two groups, the article I cite indicates that either the parametric (2-sample t-test) or the nonparametric (Mann-Whitney test) are acceptable. However, with three or more groups, you’d need to use ANOVA (parametric) or a nonparametric equivalent, such as the Friedman test. I don’t have a good citation to know the answer to that. I’d imagine that if your sample size is large enough, ANOVA should be fine because it’s a generalization of the t-test. But that’s a hunch. So, I’m afraid I can’t give you a concrete answer.
I can say that you’d be on more solid ground if you either summed multiple Likert items or averaged multiple items because they become more like continuous data. Either summing or averaging would be equally as good from a statistical perspective.
Additionally, please note in my article about parametric vs. nonparametric tests, that normality isn’t an issue for ANOVA when you have a sufficiently large sample size (see table in that article). However, you do have to worry about homogeneity of variances. If your variances aren’t roughly equal, I’d strongly recommend using Welch’s ANOVA. Click the link to read about that analysis.
I hope this helps!
Thank you for this forum. Is one obligated to process data from a Likert-type survey using either parametric or nonparametric methods? If, for example, the simplicity of a short, 5-question national survey to fire chiefs is best structured using a 5 level Likert style method, can the raw statistic compilation be used in academic journals? This might mean just showing that (again for example) “53% of US Fire Chiefs agreed strongly agreed that their community was not prepared for a natural disaster.” For the purpose of a study I am considering, I like the Likert structure directed at one large group via emailed survey but my data presentation does not need to be overly analyzed to convey results. Thank you in advance. – Erik
Hi Erik,
This might be a case of just using descriptive statistics. If you just want to say that 53% of US Fire Chiefs who took the survey agreed strongly, then you might not need to use an inferential procedure. For more details about the difference, read my post about the difference between descriptive and inferential statistics.
If you are just describing the sample and not trying to infer beyond the sample, use descriptive statistics. However, if you need to generalize the results from the respondents to the population, you’d need to use inferential procedures, which can get a bit tricky with Likert scale items. Also, you’d need to consider whether your sample even approximates a random sample. If it doesn’t approximate a random sample, then using the sample to generalize to the population might be invalid. There’s no reason to expect that a non-random sample will adequately represent the population.
If you can just go the descriptive route, that might be the way to go.
I hope this helps!
Good day, can I use normal distribution after I use two t-test in my research?
Hi Jim,
Thank you so much .Your advice has solved the most crucial problem in my work.
Regards
Tatv
You’re very welcome, Tatv!
Hi Jim,
Really appreciate your advice! my samples sizes can be considered quite large, I will go for repeated measures ANOVA design.
It is so great to have someone like to you to share with ppl about your knowledge related to stats selflessly!
Have a nice day!
Yuchen
You’re very welcome, Yuchen! Best of luck with your analysis!
Hi Jim,
Thank you so much for the reply which has helped a lot.
Kindly allow me to confirm other part of my query. Can I run Kruskàl-Wallis on summated score of Likert items.
Thanks and regards
Tatv
Hi, yes, you can use Kruskal-Wallis on summed Likert items assuming the groups have the same general shape and spread (a common assumption for nonparametric tests that compare groups).
Hi Jim, it is great to see this sharing article about stats.
May I ask what kind of test should I use in such research study outcome analysis?
I have 2 groups including control and experimental. Participants were given questionnaires which provided me continuous data. data collection happened at 3 time points, before intervention, after intervention and 12 weeks after intervention.
Now, I would like to compare:
1. the changes within each group (either control or experimental) at 3 time points
2. compare control and experimental at baseline, post intervention and 12 week after
What kind of test should I use? (already tested some groups of data were not normal, I guess non-parametric test should be used?)
Thank you for you time, it would be really helpful…
Hi Yuchen,
This sounds like a repeated measures ANOVA design to me. The nonnormal distribution can be problematic if you have small small sample sizes. However, read this post about nonparametric vs. parametric tests and look for the table with recommended sample sizes. If you meet the recommendation, then nonnormality should not be a problem.
However, if your samples are too small, or the distributions are extremely nonnormal, you can use the nonparametric Friedman test. I believe you use that procedure with a repeated measures design, although I haven’t used it that way myself.
I hope that helps point you in the right direction!
Hi Jim,
I have to analyze Likert scale data with 9 to 10 items/statements to be responded on 5 point Likert scale i.e. from strongly disagree(1) to strongly agree(5).There are three groups independent of each other. I wish to compare the groups and find if there is any difference among them.can I sum individual responses to the scale items find one score for individual and also mean of responses. For example, if an individual has responded to scale items Like 1,3,2,5,4,1,5,3,3,5 .Can I find total of these responses as 32 and do the same for all respondants. Thereafter can I run one way ANOVA in SPSS or I should do Kruskall -Wallis
What inference can I draw?
Kindly urgently advise on analyzing the data..
Hi,
Yes, analysts will often sum or average multiple Likert scale items. This creates data that are similar to continuous data. However, be aware that ordinal data, such a Likert scale items, have some inherent limitations. For example, you can’t be sure that the difference between each value is constant. For example, you might code responses as 1, 2, 3, etc. The different between 3-2 and 2-1 are both 1 unit. However those differences of one might not represent the same change. For example, in a race, the time difference between the first and second place finishers might not be the same as the time difference between the 2nd and third place finishers. If that’s the case, calculating groups means become less reliable. Just something to be aware of.
When you sum or average multiple Likert items, the data become more like continuous data and it should be fine to use ANOVA to assess the differences between group means–at least from the standpoint of data assumptions. The previous caveat still applies.
I hope that helps!
Hi Jim,
Many thanks for your informative posts.
I have no experience in using statistics and was hoping whether you could provide some advice as I have been getting rather confused after doing some research online.
I have conducted a likert survey of 10 questions looking at patients anxiety to attending hospital in the period of COVID lockdown. I have a sample size of over 300 with the 5 point scale ranging from relaxed to very worried.
I want to analyse answers to each questions separately without comparing groups – is it best to present the data as descriptive via charts/tables or is there a place for statistics here – if so what test would you recommend?
I may also want to then compare anxiety before and after attending the hospital and may also compare responses to this between genders – could you please advice what test you would use in this case?
Many thanks
Matthew
Thanks so much! That does help
This is terrific, Jim. Thanks so much. I have a question, JIm.
If I am interested in understanding whether the difference between a pre and post score on a questionnaire that uses a Likert-type scale is significantly different — what statistical test should I use? (e.g. I am thinking of a context where a person takes a test before an intervention and once again after completing it and their ratings on the likert-type scale is compared).
So grateful for your help, Jim.
Hi Manini,
You should be able to use a paired t-test for that. The article I reference in this post shows that it is ok to use a 2-sample t-test to compare two independent groups. The article doesn’t discuss using a paired t-test for before and after scores. However, given that a t-test is ok in one scenario, I don’t see that it wouldn’t be OK for another. However, I don’t have a reference to provide for that.
I hope that helps!
Perfect. Thanks for the help, Jim!
Hi Jim,
Thanks so much, this has helped me loads with my dissertation! But with my survey there was also a ranking question. I asked participants to rank 8 different categoric threats to their honeybee hives. There were 8 threats in total, so I basically asked which they think is the 1st, 2nd, 3rd….8th, most dangerous threat for their bees . Can I use a Mann-Whitney U test to see if there are significant differences between the median ranks of each threat? The survey has 331 responses in total so there is enough repetition
Thanks for all the help,
Adam
Hi Adam,
Because you have more than two categories, you’d need to use Kruskal-Wallis. That’s nonparametric alternative to a one-way ANOVA. Mann-Whitney can compare only two groups, like a 2-sample t-test.
Best of luck with your dissertation!
Hi! First of all I appreciate your information, thank you very much.
Second, I wanted to ask you the following if possible: I am preparing a survey with responses likert scale (1-5) on the impact of the pandemic on rural workers, identified by area of work
An example of some questions would be this:
Q: The pandemic has affected the way you access your work area
with answers like this:
strongly disagree = 1, disagree = 2, neutral = 3, agree = 4,
strongly agree = 5
So I would like to know what statistical method you recommend, the idea is to identify if there is an impact of the pandemic on each topic addressed in each question.
Thank you very much in advance!
ps: sorry for my english im not native speaker
Dear Jim,
thank you for saving me with my thesis! This problem is hunting me since I started.
I analyse three IVs (1-4 Likert items) and several DVs (1-5 Likert items). However, the variables are not single item variables (only one is) but I construct them from several items (two-item index). To do so I calculate the mean for every participant. Does this mean I treat them as continuous anyways?
And if I do so can I use OLS since the DVs are calculated as indices, or do I use orders light regression? (Or both to compare the results)? Can I even use order login with the indices I created?
Any helping word would mean a lot to me!
All the very best from Sweden
Johanna
Hi Johanna,
When researchers have Likert items and they either sum or average multiple items together, they can often use them as continuous variables at that point. However, just be aware that ordinal data (which includes Likert items) can be tricky because a one unit change doesn’t necessarily always represent a consistent amount of change, and that can do weird things to the model. Just be sure to check those residual plots. If the residual plots look good, then you can reasonably trust your model.
Dear Jim, thank you for this comprehensive blog!
I am currently working with ISSP survey data and I cannot wrap my head around this problem. Every source I read seems t warn me of treating my data as continuous while every social science paper I read is doing precisely that.
My question to you: If I combine two survey items (1-4 Likert scales) into an index to operationalise a concept (by calculating the mean), I automatically treat the data as continuous, right? In that case, I might just as well continue treating the data as such and run OLS with it?
I have been recommended to standardise the data, but I don’t fully understand why (since my items all have the same 1-4 Likert scale). Can you explain that to me? If I do standardise the variables I am struggling with my descriptive statistics since the interpretation of the standardised indices is rather difficult (who counts as agreeing and who doesn’t). My aim was to show frequencies that divide the sample into people who agree (including agree and strongly agree) and those who don’t.
Any help would be very much appreciated!
Kind regards
Sophie
Hello Jim
Am actually using a likert 4.0 scale for my data analysis, i tried using chi-square for testing of hypothesis buh i can’t quiet get it right,.. wanted to ask if there is actually another of method of hypothesis testing that suits the likert data presentation
Hi Ugan, if you’re comparing means like I talk about in this article, I think a 4 point Likert scale violates the assumptions more than a 5 point Likert scale. I’d lean towards using nonparametric methods.
One thing I have done in the past with Likert scale data is to take two items and use them in a chi-squared test of independence. That can tell you if there is a relationship between the two. Click the link for an example. For your case, you’d use one Likert item for each variable.
greeting Jim
i am very new to statistic and in the process of doing my research. i am focusing students attitude towards learning biology, a mixed method, the tool used are survey questionnaires- five point likert types, and interview. after feeding all the raw data in SPSS now i am struck with how to go on with analyses. your immediate help over this matter will be highl appreciated.
thank you
I have likert response type questioner to analyse my research data how can i enter in stata to analyse it.
Hi Jim,
I mistyped the skew value (which is 1.559). I have read the article and it has been very useful.
Thank you very much for your help.
Francesca
Hi Jim
I am also working with x2 different questionnaires data (pre and post) and an intervention and a control group and a 4 point likert type scale for both questionnaires. N=85 for each group.
I am planning to run a mixed way anova (2×2) within groups for time and between groups for intervention and non intervention but before I do that – the data needs to meet certain assumptions – which tests for normality would you recommend here?
I would be very grateful for some advice.
Helen
Hi Helen,
Typically, for ANOVA (and regression) you assess the distribution of the residuals using residual plots rather than the dependent variable itself. You can just plot the residuals in a normal probability plot to see if the are normal.
Hi Jim,
I am currently working on my thesis and I have some doubts how to analyze questionnaire data.
I am looking at whether control of attention differs between two groups of infants (Typical Likelihood and Elevated likelihood) at 10 and 14 months old using a behavioural paradigm. I am also looking at whether control of attention at 14 months is correlated to Regulation Capacity variable.
Regulation Capacity is a measure of temperament trait within the Infant Behavioural questionnaire (which uses a 7-Likert scale response).I have looked at the descriptive statistics (means and SD) and data for the elevated likelihood group have a skew value of – 1559. My question is whether the Regulation Capacity variable should follow a normal distribution in order to correlate the variable with measure of control of attention (behavioural data). Should I look into transforming this variable?
Thank you in advance.
Francesca
Hi Francesca,
Is the skew value really -1559? That’s an extremely skewed value. Typically, we’d say that a skew value greater than +1 or less than -1 is very large. -1559 is off the charts. I’m doubtful about that value.
Also, be aware the descriptive statistics are less useful for ordinal data, such as Likert scales.
I’d follow the guidelines of this article. If your sample size is large enough, you can probably use either a 2-sample t-test or Mann-Whitney to compare your two groups. Although look into that off-the-scale skew value. Graph the data make sure you understand what it is telling you visually.
I’m not sure about transforming a Likert scale variable. The changes between individual values might not represent a consistent change, which is why descriptive statistics are less useful and might make transformation invalid. I’m not sure what the literature says about transforming ordinal data.
Thank You so much for your help! Your explanations are extremely simple and quite effective!
Thank You for considering my doubt
But then, why is the p value extremely small? This clearly leads to Alpha being greater than p (p< .05)
A small p-value like that indicates the difference between your two groups is statistically significant. You can reject the null hypothesis and conclude that the population means are different. Read my post about t-tests to learn more about how to interpret them.
Hello Jim
This is Mayank Jain from India. Your article was extremely helpful in clearing my doubts as to which test to apply but I do have a doubt.
I am working on a research paper having a likert scale rating from (Most preferred, Preferred, Neutral, Not preferred and Least preferred) and gave them a quantitative value of 5,4,3,2,1 respectively. I applied a t-Test for Two-Sample Assuming Unequal Variances in MS Excel and got the p value as 4.976e-79 (which is extremely small). I wanted to inquire whether am I using the right test or should I use any other statistic.
Thank You.
Hi Mayank,
Yes, it sounds like you have used the right test! The article I reference at the bottom of this post supports the idea for using the 2-sample t-test in case you need a citation. Assuming unequal variances is the safe choice.
Hi Jim..
Amit this side from India.
Jim, I am doing an organizational research to understand the relationship between sales and marketing teams using a 5-point Likert scale.
My respondents have varied responses. Suggest me which test to use ?
Thank you
Amit Sharma
Hi Jim,
Thanks for this informative website, I went through fruitful ideas but I didn’t find exactly how to deal with my current case.
I have a questionnaire for satisfaction and to check which factors contribute more to the customer satisfaction. along with Age, Gender and type of service, I have many factors that reviewed by customers in an ordinal response (Extremely poor,Poor,Need improvement,Acceptable,Good,Excellent) and the satisfaction (is either satisfied or not) so which model and analysis method I can use to predict satisfaction given these different type of factors?
AM thinking to use Categorical PCA and for modelling am not sure which to use? should I scale it (1-6) and use K-means?
Appreciate your support
Hi Jim:
I managed to locate the reference for my above clarification on substituting likert scale with other values. Here it is:
https://amp.reddit.com/r/statistics/comments/82perc/how_to_analyze_ranking_data_eg_1st_2nd_3rd/
There is a further link therein:
https://statmodeling.stat.columbia.edu/2015/07/13/dont-do-the-wilcoxon/
I value your comments on the above at your convenience.
Thanks in anticipation.
Thanks Jim for your clarification.
Hi Jim. I am Sridhar from Bangalore, India. I have been following some of your blogs recently and thank you for such a lucid explanation of statistics.
I have a request to make in connection with analysis of data collected in response to Likert Scale based questionnaire.
I have noted down that the best way to convert 5-point likert scales in to numerical values is by using -1.28,0.52,0.0,5.2,1.28. Unfortunately, I haven’t noted down the article or the book chapter.
I was wondering if you this way of converting data rings a bell with you or anyone else seeing this message. Can you help me with the context of this way of converting the responses in to numbers.
Thanks
Hi Sridhar,
I’m not familiar with that approach of converting 5-point Likert scale items. The two main problems with the Likert scale:
I’m not sure that the recoding you describe solves those problems. Perhaps there is a rationale behind it that I’m not aware of. Even if there is, I’d be leery about assuming it is applicable to all data.
Hi Jim,
I am struggling with WHICH type of regression analysis I should use and HOW. I created a questionnaire in order to understand the relationship of 4 (IVs) factors and 1(DV).
Each of the (IVs) has Five questions with 5 Likert Scale Items. For example:
(First Factor)
Q1 (strongly disagree=1, disagree=2, neutral=3, agree=4, strongly agree= 5)
Q2 (strongly disagree=1, disagree=2, neutral=3, agree=4, strongly agree= 5) and so on.
The (DV) also has Five questions with 5 Likert Scale Items. For example:
Q1 (strongly dissatisfied =1, dissatisfied =2, neutral=3, satisfied =4, strongly satisfied = 5)
WHICH type of regression analysis or statistical test I should use and HOW?
Thanks in advance,
Will
Hi Will,
Because your DV is ordinal, you’ll need to use ordinal logistic regression. Read my post about choosing the correct type of regression analysis and look for it in there.
Ordinal IVs can be tricky. I don’t have a post to direct you towards but I strongly recommend getting my eBook about regression analysis. In it, I talk how to handle ordinal IVs. You’ll need to use them either as categorical or continuous variables because ordinal variables have a mix of traits.
From there you just fit the model, check the residuals, and interpret the residuals. Read my post about fitting the correct model.
Hello
I’m currently working on my master’s thesis and I have to find out if the student evaluations are biased or not. I have a questionnaire data made with likert scale from 7 faculties. Can you help me with which model should I use? Thank you.
Hi Irena,
There’s not enough information in those several sentences to be able to understand your research project goals, data collect, etc., and provide recommendations. I’d recommend consulting with a statistician or advisor at your institution who can give your study the time it deserves.
Hi Jim! I’m all too aware that my cognitive strengths do not lie in the stats area…
I have done a survey to determine elements of professional identity of a group of analysts. The study is exploratory mixed methods (the first study of this specific profession), and I need help to make sense of my data.
I have used Likert 5 scale questions for 2 elements of professional identity that I have taken from scholars who have developed the instruments 1=strongly agree = 5 strongly disagree). I have already done descriptive analysis where I id’ed the % of respondents on each scale. I don’t want to test reliability of the instrument etc but would like to compare the different demographic variables like genders/professional org membership, country, etc for these 2 elements. N=75.
I have run Mann-Whitney for the 2 factor variables, and thought about using Kruskal-Wallis H tests for those variables with more than 2 possibilities eg countries.
The results in SPSS Mann-Whitney show for instance that for one sub-element that the distribution is not the same across the genders (Asymp sig of .013). The mean rank for males (n=57) is 34.86 and that of females N=18) is 47.94. Sum of ranks is male: 1987.00 and female: 863.00.
But now to analyse this and understand and write this? What does this mean? Are the men more positive about this aspect than women? What is the “so what?” here? I need to see the value if what I’m doing here, otherwise, if you can show me to a more appropriate method?
Other people have “just” used a table to compare the mean scores of the different demographic groupings, for instance Gender: F=2.19 M= 2.76, Qualification: Doctorate=1.16, Masters degree=3.12, bachelors=2.76 etc. This is sufficient for me, as I need to know if there is a big difference between the genders? What is “big difference”. This is why I thought Mann-Whitney is a good method to say that “the genders share the same opinion about 8 of the 9 elements, but in the 9th element, men feel more positive than females.”
Please help!
Dale
Hi Dale,
Personally, I find Likert data to be aggravating. I know it’s easy to ask those types of questions in a survey. It easy for respondents to figure out how to answer. However, Likert scale data are ordinal data, which presents analysis problems because they’re a bit like continuous data and a bit like categorical data. How do you treat and analyze them? There’s been a long standing debate over whether you should use parameteric or nonparametric analyses for them. The study I cite suggests that when you’re looking at two sample analyses, such as for male versus female, it doesn’t matter much as long as you have at least 10 observations per group. Your data qualifies, so I’d say you could use either approach. If others in your field use means, it’s probably OK to go that route and not fight the current! And, you can cite this article to support the decision.
For cases where there are more than two groups, such as qualification, I don’t know if there is similar research. I would expect it would show similar results, although I don’t know what the minimum sample sizes per group would be. If you do go with the nonparametric analyses, analysts will often report the medians for each group.
Finally, I think your question about “big difference” touches upon the difference between statistical significance versus practical significance. Click that link for my post on that topic. In a nutshell, a statistically significant results doesn’t necessarily guarantee that the effect or difference is important in the real world.
Best of luck with your analysis!
Sir, If you had made a video on it, please post it here.
Thank you.
Hi Uma,
Currently, I don’t have videos. In the future, I plan to create video lessons.
Sir, the note is fine but still I am not clear about how to analyze Likert Scale(with five choices) using SPSS data analysis. I do believe that SPSS can only perform on Likert scale to show frequency, mean meridian. standred devation and other T-test, ANOVA, correlation and the others are not possible to be done by SPSS.
Mean that Likert scale didn’t show basic statstics.
Hello,
I’m analysing data from someone else’s questionnaire, I have 148 respondents for a 40 statement questionnaire. It uses a four point Likert scale. I’m using Wilcoxon Signed ranks to analyse significant improvement in scores between test/retest. I’d also like to correlated some of the variables.
There are four main areas of interest, and each of those is divided into sub-sections. My problem is that some
of the sub-sections are negatively scored, yet the section they relate to is totalled.
is it reasonable to manipulate the reversed scored items so all the ‘unhelpful’ high scores become low ‘helpful’ scores?
Hi Helen,
If think what you want to do makes sense. That’ll allow you to obtain high, positive correlations when helpful scores correlate with other helpful scores. Otherwise, you’ll obtain negative correlations. You’d still obtain the same information, but it’s less intuitive and potentially confusing to others.
I am conducting an experimental research to test the effectiveness of task-based approach on improving the students’ literacy skills. I had two groups: experimental and control and each answered a questionnaire of 17 items using likert scale to express their attitude towards the lesson given (with and without task-based approach). What statistical test should I use to test the effectiveness of this approach on improving the students’ literacy skills?
I appreciate your answer asap.
Based on the information and research that I present in this blog post, it should be clear that you can use either the two-sample t-test or the Mann-Whitney test. Unfortunately, many reviewers and advisors might have strong opinions about one being more appropriate than the other, but the research shows that either test is valid overall.
Hello sir, please do we have anything called ‘test value’ when analyzing data from a likert scale? What is the meaning of that term?
Hi jim
it was really informative post. sir i have a data set of 32 variable which is filled from 180 respondent. my all variable are on nominal scale and likert scale. their is no response variable. can i took gender variable as a response variable and use logistic regression?? if it is not suitable than tell me which type of analysis can i done rather than of cross table???
i am waiting for your response.
Hi Jim,
Thanks for another great article.
I have a question follow to that of NA that you explained here. How we should treat ‘don’t know’ response, do the ‘don’t know’ suppose to be treated the same as NA. usually we exclude ‘Don’t know’ and replaced them with SYS MIS in SPSS when we use agree scales (10 point) in regressions. Is this the right way of doing or we should assign some code to them???
Dear Jim,
Thanks a lot for your prompt reply. I am just wondering how to do chi-square test of independence. In your example you have two IV (color and area) but in my case I have only items. Kindly ellaborate the process of chi-square test of independence. for my case.
I have a sincere request. Please video lessons statstical analysis usning any software like SPSS/Mplus/R
Waiting for your kind reply.
Hi Kaushal,
You could one item that uses the Likert scale for one variable and another Likert scale item as the other variable. If you collapse it to three values as you describe, this would give you a 3X3 grid. If you perform a chi-square analysis on this, you’d learn whether the two items are independent or if there is sufficient evidence to conclude that they are associated. If they’re associated, you might find that those who agree on one item are more likely to agree on the other item, or maybe they’d be more likely to disagree. Or, perhaps, there is no association between the two items. How they respond to one item does not correlate with how they respond on the other. It’s very similar to the example I use, but you’ll have a 3X3 grid that has all the combinations of agree/agree, agree/neutral, agree/disagree, disagree/agree, disagree/neutral, disagree/disagree, and so on. Do respondents fall into those cells randomly or does there response on one item correlate to their response on the other item?
I’ve actually done exactly that with survey results years ago. I surveyed faculty about their comfort in using technology personally and in the classroom. Each time used a five point Likert scale. I didn’t convert to a 3 point scale like you’re considering. Not only the table show where they fall for both items, you can see how their responses compare for both items. I saw a pattern that showed faculty were less comfortable using technology in the classroom than on their own.
I am planning to create courses as you describe. So, those are coming! However, I have two books planned first. Hopefully, I can begin creating the courses in 2020. It’s definitely something I want to do!
Hi Jim,
First of all, I would like to thank you.I always read your post. It is very informative and helpful. Following is my query:
Objective: To check for significant differences between the proportions of disagreeing, neutral, and agreeing students
Let us suppose that i58, i59, i60 belongs to Factor A. ( strongly agree=1, agree=2, neutral=3, disagree=4, strongly disagree=5).
1.How to collapse the five-point scale into three categories: ‘disagree’ (i.e. strongly disagree and disagree), ‘neutral’ (i.e. neither agree nor disagree) and ‘agree’ (i.e. agree and strongly agree).
2. Please illustrate how to find significant differences between the proportions of disagreeing, neutral, and agreeing students using chi-square test in excel or SPSS.
Item Strongly agree Agree Neutral Disagree Strongly disagree
i58 270 440 63 11 8
i59 400 354 28 5 5
i60 239 428 104 15 5
Hi Kaushal,
I’m so happy to hear that my posts have been helpful.
I’d recommend using one of the methods I discuss in this post for analyzing a five-point Likert scale data. Both are shown to work effectively.
If you’re set on collapsing categories, that’s just a recoding issue. All 1s and 2s become “agree” and all 4s and 5s become “disagree.” Zeros are neutral. With this three-point scale, you might not be able to use t-tests or Mann-Whitney as I discuss in this post. I haven’t heard of using a proportions test on this type of data. You could try ordinal logistic regression or chi-square test of independence.
Best of luck with your analysis!
Dear Sir, greeting.
I examined satisfaction level of something with likert scale (5 ratings), is it possible to run simple independent t test for this with Age/Gender variable? I have 7 questions under satisfaction level section.
I read that independent T test just for interval scale instead of ordinal scale.
Very appreciated if can get your reply. Thank you
Hi Voon,
As I write in this post, yes, you can use a 2-sample t-test, which is for independent samples, with 5 point Likert scale items.
How do you analyze NA data when computing the average using the Likert? Should you use zero as the value or can you assign it a value? If so, is there a best value to give NA responses?
Hi Deidre,
NA responses can be difficult to include in your analysis. There’s no one size fits all answer. You’ll need to determine if NA fits in logically with your scale, and what value it represents. That’ll vary based on the subject area and the scale.
In some cases, NA values may need to be excluded. For example, in a strongly agree to strongly disagree scale, if NA truly means not applicable, the respondent is indicating that the item does not apply to them. In those cases, you should consider excluding their response from the dataset for that item. You’ll have to think about whether NA is different than say Neither agree or disagree, or whatever the middle value is.
However, if you can take NA to represent some sort of middle value, or something else, you can use it for that. However, you have to be very careful. And, in fact, I’d say that if you can use NA to represent some other value for that question, it represents bad survey design because you have two different options for item that are equivalent. If NA maps to another option, it’s probably best to not even include NA as option for that item in the first place. For example, if the question is, how strongly does an issue affect you? And the scale ranges from very strongly affects me to does not affect me at all, an NA response probably corresponds to does not affect me at all. But, why include both because they’re redundant?
For that reason, my guess is that NA does not map directly to another option most of the time. But, you’ll have to consider the scale and whether a value on it maps to NA. I can see cases where NA might equal no opinion.
Jim,
Love you website, it is easy to understand and has helped me a lot. I have a question. I have 2 sets of survey data. One from patients (n=42) and one from staff (n=12). There are two sub-scales that I want to compare the two groups on but am concerned about the difference in sample sizes. Would I use a Mann-Whitney just on the two sub-scales?? The sub-scales were measured on a 5-point Likert scale. Your help is appreciated.
Hi Traci, thanks for the kind words. I really appreciate them!
I wouldn’t worry about the unequal sample sizes as long as your smallest group has more than 10, which it does.
The benefit of equal sized group comes in the form of statistical power, which the ability to detect a difference. It appears like you have 54 observations. Now, if you had two groups each with 27 observations to produce that total of 54, your test would have more power than what you’ve actually got. However, reality isn’t always nice and neat, and you have to work with what you’ve got. So, it’s fine to test those two groups. The statistical power is somewhat less than what it would’ve been with equal sized groups, but it’s not inherently problematic.
Hi Jim,
I m a learner and doing a correlational research on job satisfaction and attitude of teachers,for job satisfaction I have used a likert scale.In this scale there are 8 factors of job satisfaction and there are fixed number of statements for each factor like factor A has 7 statements.Also the scale has 52 statements.Before data analysis can I use mean score of each participant i.e. raw score /52.And same approach for factor analysis too i.e. raw score of factor A /7
Hi Shuchi,
There’s general rule of thumb that if you have a discrete variable that has 10 equally spaced values or more, and the data are spread across those values, you can treat it as a continuous variable. If you satisfy that, I think you’re safe. And, it sounds like if you’re summing the scores for those statements you’ll be ok. Using the average is probably ok too because you are effectively using the same amount of information.
My is not a response to the question asked but a more clarification on this issue. Assuming one uses a four point scale can we still use t-test? Also can we call a four point scale likert?
Hi Joseph,
Unfortunately, I don’t know for sure. I haven’t read research about it that says one way or another. The research that is the basis for this post only assessed 5-point scales. Honestly, I was surprised that t-tests worked as well as they did for 5 point scales! Four points scales satisfy the t-test assumptions even less than 5 point scales. So, I think that would be risky–but I can’t say that I know for sure.
As for the terminology, I’ve seen it argued both ways. Some say that a Likert scale specifically refers to a 5-point ordinal scale. While I’ve seen others say that it doesn’t have to be 5-points. My own take is that there are probably other more important considerations for what constitutes a Likert scale. Namely, that the values need to be balanced between positive and negative relative to a neutral value. Additionally, the distance between values are equal.
In other words, a Likert scale is a special type of ordinal data scale. Ordinal data don’t require those properties (balance, neutral value, and equal spacing), but in my mind, Likert scales do require those properties, but don’t require specifically 5-points. With four points, I’m not sure that your data can satisfy all of those requirements.
I hope this helps!
Hi Jim, I know this is a long time since your post. I had a query.
I am involved with analysing some days where an educational intervention was performed for students. Likert scale was used to assess pre- and post- intervention changes in knowledge, confidence level etc.
I do not think one can use the scale data like Likert as they are, to assess significance with t-test or the Mann-Whitney test.
Do you think we should assign numerical values to the scale data before using the tests of statistical significance?
For example 0.2 for a Likert reading of 1 on a scale of 5, 0.8 for 4/5 etc. ?
in my comprehension we can you use 2-sample t-test or Mann-Whitney If we have two groups and analyzing five-point Likert.i have one question.
what about if we have more than two groups and more than five-point Likert?
very intersting thanks you so much..
That’s correct. As for the other cases you mention, it looks promising but we can’t say definitively from this research. However, as you increase the number of values (e.g., a 7-point scale), the data are becoming more like a continuous variable, which is good. And the F-test in ANOVA is a generalization of the t-test. So, the results should be applicable to these other cases. The question in my mind is that as you increase the number of groups with ANOVA, you’d need to be sure to keep the number of observations per group at a good number. So, it looks promising for these other cases that you mention, but I can’t state definitively that it’s true based on the specific research that I’ve read.
Good and very informative
Thank you!
Hi sir,
am Naveen Kumar S, from india. recently on 1st july 2017 GST was implemented across India and am writing a research paper on GST and the issues faced by the respondents (both CAs and tax payers) after GST implementation. for this i had received the responses through likert scale based questions and now stuck in analyzing the data. dont know in which perspective i have to initiate (the main theme is-issues faced by them in post GST implementation) and also as a learner cant able to frame the null and altenate hypothesis…
pls help me in this regard and give some hint/ solution for the same as early as possible…
thanks in advance
with regards
Naveen S
[email protected]