• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • About Me
  • Contact Me

Statistics By Jim

Making statistics intuitive

  • Basics
  • Hypothesis Testing
  • Regression
  • ANOVA
  • Probability
  • Time Series
  • Fun
  • Glossary
  • My Store

ANOVA

How to do Two-Way ANOVA in Excel

By Jim Frost 22 Comments

Use two-way ANOVA to assess differences between the group means that are defined by two categorical factors. In this post, we’ll work through two-way ANOVA using Excel. Even if Excel isn’t your main statistical package, this post is an excellent introduction to two-way ANOVA. Excel refers to this analysis as two factor ANOVA. [Read more…] about How to do Two-Way ANOVA in Excel

Filed Under: ANOVA Tagged With: analysis example, Excel, interpreting results

How to do One-Way ANOVA in Excel

By Jim Frost 18 Comments

Use one-way ANOVA to determine whether the means of at least three groups are different. Excel refers to this test as Single Factor ANOVA. This post is an excellent introduction to performing and interpreting one-way ANOVA even if Excel isn’t your primary statistical software package. [Read more…] about How to do One-Way ANOVA in Excel

Filed Under: ANOVA Tagged With: analysis example, Excel, interpreting results

Using Post Hoc Tests with ANOVA

By Jim Frost 68 Comments

Post hoc tests are an integral part of ANOVA. When you use ANOVA to test the equality of at least three group means, statistically significant results indicate that not all of the group means are equal. However, ANOVA results do not identify which particular differences between pairs of means are significant. Use post hoc tests to explore differences between multiple group means while controlling the experiment-wise error rate.

In this post, I’ll show you what post hoc analyses are, the critical benefits they provide, and help you choose the correct one for your study. Additionally, I’ll show why failure to control the experiment-wise error rate will cause you to have severe doubts about your results. [Read more…] about Using Post Hoc Tests with ANOVA

Filed Under: ANOVA Tagged With: analysis example, choosing analysis, conceptual, graphs, interpreting results

How F-tests work in Analysis of Variance (ANOVA)

By Jim Frost 46 Comments

Analysis of variance (ANOVA) uses F-tests to statistically assess the equality of means when you have three or more groups. In this post, I’ll answer several common questions about the F-test.

  • How do F-tests work?
  • Why do we analyze variances to test means?

I’ll use concepts and graphs to answer these questions about F-tests in the context of a one-way ANOVA example. I’ll use the same approach that I use to explain how t-tests work. If you need a primer on the basics, read my hypothesis testing overview.

[Read more…] about How F-tests work in Analysis of Variance (ANOVA)

Filed Under: ANOVA Tagged With: conceptual, graphs, probability

Benefits of Welch’s ANOVA Compared to the Classic One-Way ANOVA

By Jim Frost 47 Comments

Welch’s ANOVA is an alternative to the traditional analysis of variance (ANOVA) and it offers some serious benefits. One-way analysis of variance determines whether differences between the means of at least three groups are statistically significant. For decades, introductory statistics classes have taught the classic Fishers one-way ANOVA that uses the F-test. It’s a standard statistical analysis, and you might think it’s pretty much set in stone by now. Surprise, there’s a significant change occurring in the world of one-way analysis of variance! [Read more…] about Benefits of Welch’s ANOVA Compared to the Classic One-Way ANOVA

Filed Under: ANOVA Tagged With: analysis example, assumptions, choosing analysis, conceptual, interpreting results

Multivariate ANOVA (MANOVA) Benefits and When to Use It

By Jim Frost 111 Comments

Multivariate ANOVA (MANOVA) extends the capabilities of analysis of variance (ANOVA) by assessing multiple dependent variables simultaneously. ANOVA statistically tests the differences between three or more group means. For example, if you have three different teaching methods and you want to evaluate the average scores for these groups, you can use ANOVA. However, ANOVA does have a drawback. It can assess only one dependent variable at a time. This limitation can be an enormous problem in certain circumstances because it can prevent you from detecting effects that actually exist. [Read more…] about Multivariate ANOVA (MANOVA) Benefits and When to Use It

Filed Under: ANOVA Tagged With: analysis example, choosing analysis, conceptual, interpreting results

Repeated Measures Designs: Benefits and an ANOVA Example

By Jim Frost 14 Comments

Repeated measures designs, also known as a within-subjects designs, can seem like oddball experiments. When you think of a typical experiment, you probably picture an experimental design that uses mutually exclusive, independent groups. These experiments have a control group and treatment groups that have clear divisions between them. Each subject is in only one of these groups. [Read more…] about Repeated Measures Designs: Benefits and an ANOVA Example

Filed Under: ANOVA Tagged With: analysis example, conceptual, interpreting results

Primary Sidebar

Meet Jim

I’ll help you intuitively understand statistics by focusing on concepts and using plain English so you can concentrate on understanding your results.

Read More…

Buy My Introduction to Statistics eBook!

New! Buy My Hypothesis Testing eBook!

Buy My Regression eBook!

Subscribe by Email

Enter your email address to receive notifications of new posts by email.

    I won't send you spam. Unsubscribe at any time.

    Follow Me

    • FacebookFacebook
    • RSS FeedRSS Feed
    • TwitterTwitter
    • Popular
    • Latest
    Popular
    • How To Interpret R-squared in Regression Analysis
    • How to Interpret P-values and Coefficients in Regression Analysis
    • Measures of Central Tendency: Mean, Median, and Mode
    • Normal Distribution in Statistics
    • Multicollinearity in Regression Analysis: Problems, Detection, and Solutions
    • How to Interpret the F-test of Overall Significance in Regression Analysis
    • Understanding Interaction Effects in Statistics
    Latest
    • Descriptive Statistics in Excel
    • Using Contingency Tables to Calculate Probabilities
    • Probability Fundamentals
    • Using Applied Statistics to Expand Human Knowledge
    • Variance Inflation Factors (VIFs)
    • Assessing a COVID-19 Vaccination Experiment and Its Results
    • P-Values, Error Rates, and False Positives

    Recent Comments

    • Patrick on The Gauss-Markov Theorem and BLUE OLS Coefficient Estimates
    • Prima Silvestre on Descriptive Statistics in Excel
    • Jim Frost on 5 Ways to Find Outliers in Your Data
    • Jim Frost on Multivariate ANOVA (MANOVA) Benefits and When to Use It
    • Kelly Papapavlou on Multivariate ANOVA (MANOVA) Benefits and When to Use It

    Copyright © 2021 · Jim Frost · Privacy Policy