Having independent and identically distributed (IID) data is a common assumption for statistical procedures and hypothesis tests. But what does that mouthful of words actually mean? That’s the topic of this post! And, I’ll provide helpful tips for determining whether your data are IID. [Read more…] about Independent and Identically Distributed Data (IID)

# assumptions

## Guidelines for Removing and Handling Outliers in Data

Outliers are unusual values in your dataset, and they can distort statistical analyses and violate their assumptions. Unfortunately, all analysts will confront outliers and be forced to make decisions about what to do with them. Given the problems they can cause, you might think that it’s best to remove them from your data. But, that’s not always the case. Removing outliers is legitimate only for specific reasons. [Read more…] about Guidelines for Removing and Handling Outliers in Data

## When Can I Use One-Tailed Hypothesis Tests?

One-tailed hypothesis tests offer the promise of more statistical power compared to an equivalent two-tailed design. While there is some debate about when you can use a one-tailed test, the general consensus among statisticians is that you should use two-tailed tests unless you have concrete reasons for using a one-tailed test.

In this post, I discuss when you should and should not use one-tailed tests. I’ll cover the different schools of thought and offer my own opinion. [Read more…] about When Can I Use One-Tailed Hypothesis Tests?

## Central Limit Theorem Explained

The central limit theorem in statistics states that, given a sufficiently large sample size, the sampling distribution of the mean for a variable will approximate a normal distribution regardless of that variable’s distribution in the population.

Unpacking the meaning from that complex definition can be difficult. That’s the topic for this post! I’ll walk you through the various aspects of the central limit theorem (CLT) definition, and show you why it is vital in statistics. [Read more…] about Central Limit Theorem Explained

## Introduction to Bootstrapping in Statistics with an Example

Bootstrapping is a statistical procedure that resamples a single dataset to create many simulated samples. This process allows you to calculate standard errors, construct confidence intervals, and perform hypothesis testing for numerous types of sample statistics. Bootstrap methods are alternative approaches to traditional hypothesis testing and are notable for being easier to understand and valid for more conditions.

In this blog post, I explain bootstrapping basics, compare bootstrapping to conventional statistical methods, and explain when it can be the better method. Additionally, I’ll work through an example using real data to create bootstrapped confidence intervals. [Read more…] about Introduction to Bootstrapping in Statistics with an Example

## Confounding Variables Can Bias Your Results

Omitted variable bias occurs when a regression model leaves out relevant independent variables, which are known as confounding variables. This condition forces the model to attribute the effects of omitted variables to variables that are in the model, which biases the coefficient estimates. [Read more…] about Confounding Variables Can Bias Your Results

## The Gauss-Markov Theorem and BLUE OLS Coefficient Estimates

The Gauss-Markov theorem states that if your linear regression model satisfies the first six classical assumptions, then ordinary least squares (OLS) regression produces unbiased estimates that have the smallest variance of all possible linear estimators. [Read more…] about The Gauss-Markov Theorem and BLUE OLS Coefficient Estimates

## 7 Classical Assumptions of Ordinary Least Squares (OLS) Linear Regression

Ordinary Least Squares (OLS) is the most common estimation method for linear models—and that’s true for a good reason. As long as your model satisfies the OLS assumptions for linear regression, you can rest easy knowing that you’re getting the best possible estimates. [Read more…] about 7 Classical Assumptions of Ordinary Least Squares (OLS) Linear Regression

## Use Control Charts with Hypothesis Tests

Typically, quality improvement analysts use control charts to assess business processes and don’t have hypothesis tests in mind. Do you know how control charts provide tremendous benefits in other settings and with hypothesis testing? Spoilers—control charts check an assumption that we often forget about for hypothesis tests! [Read more…] about Use Control Charts with Hypothesis Tests

## Heteroscedasticity in Regression Analysis

Heteroscedasticity means unequal scatter. In regression analysis, we talk about heteroscedasticity in the context of the residuals or error term. Specifically, heteroscedasticity is a systematic change in the spread of the residuals over the range of measured values. Heteroscedasticity is a problem because ordinary least squares (OLS) regression assumes that all residuals are drawn from a population that has a constant variance (homoscedasticity).

To satisfy the regression assumptions and be able to trust the results, the residuals should have a constant variance. In this blog post, I show you how to identify heteroscedasticity, explain what produces it, the problems it causes, and work through an example to show you several solutions. [Read more…] about Heteroscedasticity in Regression Analysis

## How to Choose Between Linear and Nonlinear Regression

As you fit regression models, you might need to make a choice between linear and nonlinear regression models. The field of statistics can be weird. Despite their names, both forms of regression can fit curvature in your data. So, how do you choose? In this blog post, I show you how to choose between linear and nonlinear regression models. [Read more…] about How to Choose Between Linear and Nonlinear Regression

## Making Predictions with Regression Analysis

If you were able to make predictions about something important to you, you’d probably love that, right? It’s even better if you know that your predictions are sound. In this post, I show how to use regression analysis to make predictions and determine whether they are both unbiased and precise. [Read more…] about Making Predictions with Regression Analysis

## Curve Fitting using Linear and Nonlinear Regression

In regression analysis, curve fitting is the process of specifying the model that provides the best fit to the specific curves in your dataset. Curved relationships between variables are not as straightforward to fit and interpret as linear relationships. [Read more…] about Curve Fitting using Linear and Nonlinear Regression

## Nonparametric Tests vs. Parametric Tests

Nonparametric tests don’t require that your data follow the normal distribution. They’re also known as distribution-free tests and can provide benefits in certain situations. Typically, people who perform statistical hypothesis tests are more comfortable with parametric tests than nonparametric tests.

You’ve probably heard it’s best to use nonparametric tests if your data are not normally distributed—or something along these lines. That seems like an easy way to choose, but there’s more to the decision than that. [Read more…] about Nonparametric Tests vs. Parametric Tests

## R-squared Is Not Valid for Nonlinear Regression

Nonlinear regression is an extremely flexible analysis that can fit most any curve that is present in your data. R-squared seems like a very intuitive way to assess the goodness-of-fit for a regression model. Unfortunately, the two just don’t go together. R-squared is invalid for nonlinear regression. [Read more…] about R-squared Is Not Valid for Nonlinear Regression

## Check Your Residual Plots to Ensure Trustworthy Regression Results!

Use residual plots to check the assumptions of an OLS linear regression model. If you violate the assumptions, you risk producing results that you can’t trust. Residual plots display the residual values on the y-axis and fitted values, or another variable, on the x-axis. After you fit a regression model, it is crucial to check the residual plots. If your plots display unwanted patterns, you can’t trust the regression coefficients and other numeric results.

In this post, I explain the conceptual reasons why residual plots help ensure that your regression model is valid. I’ll also show you what to look for and how to fix the problems. [Read more…] about Check Your Residual Plots to Ensure Trustworthy Regression Results!

## Benefits of Welch’s ANOVA Compared to the Classic One-Way ANOVA

Welch’s ANOVA is an alternative to the traditional analysis of variance (ANOVA) and it offers some serious benefits. One-way analysis of variance determines whether differences between the means of at least three groups are statistically significant. For decades, introductory statistics classes have taught the classic Fishers one-way ANOVA that uses the F-test. It’s a standard statistical analysis, and you might think it’s pretty much set in stone by now. Surprise, there’s a significant change occurring in the world of one-way analysis of variance! [Read more…] about Benefits of Welch’s ANOVA Compared to the Classic One-Way ANOVA

## How to Analyze Likert Scale Data

How do you analyze Likert scale data? Likert scales are the most broadly used method for scaling responses in survey studies. Survey questions that ask you to indicate your level of agreement, from strongly agree to strongly disagree, use the Likert scale. The data in the worksheet are five-point Likert scale data for two groups. [Read more…] about How to Analyze Likert Scale Data

## The Monty Hall Problem: A Statistical Illusion

Who would’ve thought that an old TV game show could inspire a statistical problem that has tripped up mathematicians and statisticians with Ph.Ds? The Monty Hall problem has confused people for decades. In the game show, Let’s Make a Deal, Monty Hall asks you to guess which closed door a prize is behind. The answer is so puzzling that people often refuse to accept it! The problem occurs because our statistical assumptions are incorrect.

[Read more…] about The Monty Hall Problem: A Statistical Illusion