Use scatterplots to show relationships between pairs of continuous variables. These graphs display symbols at the X, Y coordinates of the data points for the paired variables. Scatterplots are also known as scattergrams and scatter charts. [Read more…] about Scatterplots: Using, Examples, and Interpreting

# interpreting results

## Pie Charts: Using, Examples, and Interpreting

Use pie charts to compare the sizes of categories to the entire dataset. To create a pie chart, you must have a categorical variable that divides your data into groups. These graphs consist of a circle (i.e., the pie) with slices representing subgroups. The size of each slice is proportional to the relative size of each category out of the whole. [Read more…] about Pie Charts: Using, Examples, and Interpreting

## Bar Charts: Using, Examples, and Interpreting

Use bar charts to compare categories when you have at least one categorical or discrete variable. Each bar represents a summary value for one discrete level, where longer bars indicate higher values. Types of summary values include counts, sums, means, and standard deviations. Bar charts are also known as bar graphs. [Read more…] about Bar Charts: Using, Examples, and Interpreting

## Line Charts: Using, Examples, and Interpreting

Use line charts to display a series of data points that are connected by lines. Analysts use line charts to emphasize changes in a metric on the vertical Y-axis by another variable on the horizontal X-axis. Often, the X-axis reflects time, but not always. Line charts are also known as line plots. [Read more…] about Line Charts: Using, Examples, and Interpreting

## Dot Plots: Using, Examples, and Interpreting

Use dot plots to display the distribution of your sample data when you have continuous variables. These graphs stack dots along the horizontal X-axis to represent the frequencies of different values. More dots indicate greater frequency. Each dot represents a set number of observations. [Read more…] about Dot Plots: Using, Examples, and Interpreting

## Empirical Cumulative Distribution Function (CDF) Plots

Use an empirical cumulative distribution function plot to display the data points in your sample from lowest to highest against their percentiles. These graphs require continuous variables and allow you to derive percentiles and other distribution properties. This function is also known as the empirical CDF or ECDF. [Read more…] about Empirical Cumulative Distribution Function (CDF) Plots

## Contour Plots: Using, Examples, and Interpreting

Use contour plots to display the relationship between two independent variables and a dependent variable. The graph shows values of the Z variable for combinations of the X and Y variables. The X and Y values are displayed along the X and Y-axes, while contour lines and bands represent the Z value. The contour lines connect combinations of the X and Y variables that produce equal values of Z. [Read more…] about Contour Plots: Using, Examples, and Interpreting

## Using Excel to Calculate Correlation

Excel can calculate correlation coefficients and a variety of other statistical analyses. Even if you don’t use Excel regularly, this post is an excellent introduction to calculating and interpreting correlation.

In this post, I provide step-by-step instructions for having Excel calculate Pearson’s correlation coefficient, and I’ll show you how to interpret the results. Additionally, I include links to relevant statistical resources I’ve written that provide intuitive explanations. Together, we’ll analyze and interpret an example dataset! [Read more…] about Using Excel to Calculate Correlation

## Standard Error of the Mean (SEM)

The standard error of the mean (SEM) is a bit mysterious. You’ll frequently find it in your statistical output. Is it a measure of variability? How does the standard error of the mean compare to the standard deviation? How do you interpret it?

In this post, I answer all these questions about the standard error of the mean, show how it relates to sample size considerations and statistical significance, and explain the general concept of other types of standard errors. In fact, I view standard errors as the doorway from descriptive statistics to inferential statistics. You’ll see how that works! [Read more…] about Standard Error of the Mean (SEM)

## Understanding Historians’ Rankings of U.S. Presidents using Regression Models

Historians rank the U.S. Presidents from best to worse using all the historical knowledge at their disposal. Frequently, groups, such as C-Span, ask these historians to rank the Presidents and average the results together to help reduce bias. The idea is to produce a set of rankings that incorporates a broad range of historians, a vast array of information, and a historical perspective. These rankings include informed assessments of each President’s effectiveness, leadership, moral authority, administrative skills, economic management, vision, and so on. [Read more…] about Understanding Historians’ Rankings of U.S. Presidents using Regression Models

## Exponential Smoothing for Time Series Forecasting

Exponential smoothing is a forecasting method for univariate time series data. This method produces forecasts that are weighted averages of past observations where the weights of older observations exponentially decrease. Forms of exponential smoothing extend the analysis to model data with trends and seasonal components. [Read more…] about Exponential Smoothing for Time Series Forecasting

## Descriptive Statistics in Excel

Descriptive statistics summarize your dataset, painting a picture of its properties. These properties include various central tendency and variability measures, distribution properties, outlier detection, and other information. Unlike inferential statistics, descriptive statistics only describe your dataset’s characteristics and do not attempt to generalize from a sample to a population. [Read more…] about Descriptive Statistics in Excel

## Variance Inflation Factors (VIFs)

Variance Inflation Factors (VIFs) measure the correlation among independent variables in least squares regression models. Statisticians refer to this type of correlation as multicollinearity. Excessive multicollinearity can cause problems for regression models.

In this post, I focus on VIFs and how they detect multicollinearity, why they’re better than pairwise correlations, how to calculate VIFs yourself, and interpreting VIFs. If you need a refresher about the types of problems that multicollinearity causes and how to fix them, read my post: Multicollinearity: Problems, Detection, and Solutions. [Read more…] about Variance Inflation Factors (VIFs)

## Assessing a COVID-19 Vaccination Experiment and Its Results

Moderna has announced encouraging preliminary results for their COVID-19 vaccine. In this post, I assess the available data and explain what the vaccine’s effectiveness really means. I also look at Moderna’s experimental design and examine how it incorporates statistical procedures and concepts that I discuss throughout my blog posts and books. [Read more…] about Assessing a COVID-19 Vaccination Experiment and Its Results

## How to Perform Regression Analysis using Excel

Excel can perform various statistical analyses, including regression analysis. It is a great option because nearly everyone can access Excel. This post is an excellent introduction to performing and interpreting regression analysis, even if Excel isn’t your primary statistical software package.

[Read more…] about How to Perform Regression Analysis using Excel

## How the Chi-Squared Test of Independence Works

Chi-squared tests of independence determine whether a relationship exists between two categorical variables. Do the values of one categorical variable depend on the value of the other categorical variable? If the two variables are independent, knowing the value of one variable provides no information about the value of the other variable.

I’ve previously written about Pearson’s chi-square test of independence using a fun Star Trek example. Are the uniform colors related to the chances of dying? You can test the notion that the infamous red shirts have a higher likelihood of dying. In that post, I focus on the purpose of the test, applied it to this example, and interpreted the results.

In this post, I’ll take a bit of a different approach. I’ll show you the nuts and bolts of how to calculate the expected values, chi-square value, and degrees of freedom. Then you’ll learn how to use the chi-squared distribution in conjunction with the degrees of freedom to calculate the p-value. [Read more…] about How the Chi-Squared Test of Independence Works

## How to Test Variances in Excel

Use a variances test to determine whether the variability of two groups differs. In this post, we’ll work through a two-sample variances test that Excel provides. Even if Excel isn’t your primary statistical software, this post provides an excellent introduction to variance tests. Excel refers to this analysis as F-Test Two-Sample for Variances. [Read more…] about How to Test Variances in Excel

## How to do Two-Way ANOVA in Excel

Use two-way ANOVA to assess differences between the group means that are defined by two categorical factors. In this post, we’ll work through two-way ANOVA using Excel. Even if Excel isn’t your main statistical package, this post is an excellent introduction to two-way ANOVA. Excel refers to this analysis as two factor ANOVA. [Read more…] about How to do Two-Way ANOVA in Excel

## How to do One-Way ANOVA in Excel

Use one-way ANOVA to determine whether the means of at least three groups are different. Excel refers to this test as Single Factor ANOVA. This post is an excellent introduction to performing and interpreting one-way ANOVA even if Excel isn’t your primary statistical software package. [Read more…] about How to do One-Way ANOVA in Excel

## How to do t-Tests in Excel

Excel can perform various statistical analyses, including t-tests. It is an excellent option because nearly everyone can access Excel. This post is a great introduction to performing and interpreting t-tests even if Excel isn’t your primary statistical software package.

In this post, I provide step-by-step instructions for using Excel to perform t-tests. Importantly, I also show you how to select the correct form of t-test, choose the right options, and interpret the results. I also include links to additional resources I’ve written, which present clear explanations of relevant t-test concepts that you won’t find in Excel’s documentation. And, I use an example dataset for us to work through and interpret together! [Read more…] about How to do t-Tests in Excel