• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar
  • My Store
  • Glossary
  • Home
  • About Me
  • Contact Me

Statistics By Jim

Making statistics intuitive

  • Graphs
  • Basics
  • Hypothesis Testing
  • Regression
  • ANOVA
  • Probability
  • Time Series
  • Fun

Graphs

Control Chart: Uses, Example, and Types

By Jim Frost Leave a Comment

What is a Control Chart?

Control charts determine whether a process is stable and in control or whether it is out of control and in need of adjustment. Some degree of variation is inevitable in any process. Control charts help prevent overreactions to normal process variability while prompting quick responses to unusual variation. Control charts are also known as Shewhart charts. [Read more…] about Control Chart: Uses, Example, and Types

Filed Under: Graphs Tagged With: quality improvement

X and Y Axis in Graphs

By Jim Frost Leave a Comment

What is the X and Y Axis?

The X and Y axis form the basis of most graphs. These two perpendicular lines define the coordinate plane. X and Y values can specify any point on this plane using the Cartesian coordinate system. [Read more…] about X and Y Axis in Graphs

Filed Under: Graphs Tagged With: conceptual

Stem and Leaf Plot: Making, Reading & Examples

By Jim Frost 2 Comments

What is a Stem and Leaf Plot?

Stem and leaf plots display the shape and spread of a continuous data distribution. These graphs are similar to histograms, but instead of using bars, they show digits. It’s a particularly valuable tool during exploratory data analysis. They can help you identify the central tendency, variability, skewness of your distribution, and outliers. Stem and leaf plots are also known as stemplots. [Read more…] about Stem and Leaf Plot: Making, Reading & Examples

Filed Under: Graphs Tagged With: choosing analysis, distributions, interpreting results

Pareto Chart: Making, Reading & Examples

By Jim Frost Leave a Comment

What is a Pareto Chart?

A Pareto chart is a specialized bar chart that displays categories in descending order and a line chart representing the cumulative amount. The chart effectively communicates the categories that contribute the most to the total. Frequently, quality analysts use Pareto charts to identify the most common types of defects or other problems.

Learn how to use and read Pareto charts and understand the Pareto principle and the 80/20 rule that are behind it. I’ll also show you how to create them using Excel. [Read more…] about Pareto Chart: Making, Reading & Examples

Filed Under: Graphs Tagged With: choosing analysis, data types, interpreting results, quality improvement

Venn Diagrams: Uses, Examples, and Making

By Jim Frost Leave a Comment

Venn diagrams visually represent relationships between concepts. They use circles to display similarities and differences between sets of ideas, traits, or items. Intersections indicate that the groups have common elements. Non-overlapping areas represent traits that are unique to one set. Venn diagrams are also known as logic diagrams and set diagrams. [Read more…] about Venn Diagrams: Uses, Examples, and Making

Filed Under: Graphs Tagged With: choosing analysis, conceptual, Excel

Scatterplots: Using, Examples, and Interpreting

By Jim Frost 4 Comments

Use scatterplots to show relationships between pairs of continuous variables. These graphs display symbols at the X, Y coordinates of the data points for the paired variables. Scatterplots are also known as scattergrams and scatter charts. [Read more…] about Scatterplots: Using, Examples, and Interpreting

Filed Under: Graphs Tagged With: analysis example, choosing analysis, data types, interpreting results

Pie Charts: Using, Examples, and Interpreting

By Jim Frost Leave a Comment

Use pie charts to compare the sizes of categories to the entire dataset. To create a pie chart, you must have a categorical variable that divides your data into groups. These graphs consist of a circle (i.e., the pie) with slices representing subgroups. The size of each slice is proportional to the relative size of each category out of the whole. [Read more…] about Pie Charts: Using, Examples, and Interpreting

Filed Under: Graphs Tagged With: analysis example, choosing analysis, data types, interpreting results

Bar Charts: Using, Examples, and Interpreting

By Jim Frost 4 Comments

Use bar charts to compare categories when you have at least one categorical or discrete variable. Each bar represents a summary value for one discrete level, where longer bars indicate higher values. Types of summary values include counts, sums, means, and standard deviations. Bar charts are also known as bar graphs. [Read more…] about Bar Charts: Using, Examples, and Interpreting

Filed Under: Graphs Tagged With: analysis example, choosing analysis, data types, interpreting results

Line Charts: Using, Examples, and Interpreting

By Jim Frost 2 Comments

Use line charts to display a series of data points that are connected by lines. Analysts use line charts to emphasize changes in a metric on the vertical Y-axis by another variable on the horizontal X-axis. Often, the X-axis reflects time, but not always. Line charts are also known as line plots. [Read more…] about Line Charts: Using, Examples, and Interpreting

Filed Under: Graphs Tagged With: analysis example, choosing analysis, data types, interpreting results

Dot Plots: Using, Examples, and Interpreting

By Jim Frost Leave a Comment

Use dot plots to display the distribution of your sample data when you have continuous variables. These graphs stack dots along the horizontal X-axis to represent the frequencies of different values. More dots indicate greater frequency. Each dot represents a set number of observations. [Read more…] about Dot Plots: Using, Examples, and Interpreting

Filed Under: Graphs Tagged With: analysis example, choosing analysis, data types, distributions, interpreting results

Empirical Cumulative Distribution Function (CDF) Plots

By Jim Frost Leave a Comment

Use an empirical cumulative distribution function plot to display the data points in your sample from lowest to highest against their percentiles. These graphs require continuous variables and allow you to derive percentiles and other distribution properties. This function is also known as the empirical CDF or ECDF. [Read more…] about Empirical Cumulative Distribution Function (CDF) Plots

Filed Under: Graphs Tagged With: analysis example, choosing analysis, data types, interpreting results

Contour Plots: Using, Examples, and Interpreting

By Jim Frost 1 Comment

Use contour plots to display the relationship between two independent variables and a dependent variable. The graph shows values of the Z variable for combinations of the X and Y variables. The X and Y values are displayed along the X and Y-axes, while contour lines and bands represent the Z value. The contour lines connect combinations of the X and Y variables that produce equal values of Z. [Read more…] about Contour Plots: Using, Examples, and Interpreting

Filed Under: Graphs Tagged With: choosing analysis, data types, interpreting results

Primary Sidebar

Meet Jim

I’ll help you intuitively understand statistics by focusing on concepts and using plain English so you can concentrate on understanding your results.

Read More...

Buy My Introduction to Statistics Book!

Cover of my Introduction to Statistics: An Intuitive Guide ebook.

Buy My Hypothesis Testing Book!

Cover image of my Hypothesis Testing: An Intuitive Guide ebook.

Buy My Regression Book!

Cover for my ebook, Regression Analysis: An Intuitive Guide for Using and Interpreting Linear Models.

Subscribe by Email

Enter your email address to receive notifications of new posts by email.

    I won't send you spam. Unsubscribe at any time.

    Follow Me

    • FacebookFacebook
    • RSS FeedRSS Feed
    • TwitterTwitter

    Top Posts

    • How to Interpret P-values and Coefficients in Regression Analysis
    • How To Interpret R-squared in Regression Analysis
    • Mean, Median, and Mode: Measures of Central Tendency
    • Multicollinearity in Regression Analysis: Problems, Detection, and Solutions
    • How to Find the P value: Process and Calculations
    • Z-table
    • How to do t-Tests in Excel
    • How to Interpret the F-test of Overall Significance in Regression Analysis
    • F-table
    • One-Tailed and Two-Tailed Hypothesis Tests Explained

    Recent Posts

    • Cumulative Distribution Function (CDF): Uses, Graphs & vs PDF
    • Slope Intercept Form of Linear Equations: A Guide
    • Population vs Sample: Uses and Examples
    • How to Calculate a Percentage
    • Control Chart: Uses, Example, and Types
    • Monte Carlo Simulation: Make Better Decisions

    Recent Comments

    • Gary on Statistical Significance: Definition & Meaning
    • Gregory C. Alexander on Use Control Charts with Hypothesis Tests
    • Kalu on Using Post Hoc Tests with ANOVA
    • Jim Frost on Monte Carlo Simulation: Make Better Decisions
    • Gilberto on Monte Carlo Simulation: Make Better Decisions

    Copyright © 2023 · Jim Frost · Privacy Policy