**UPDATED! April 3, 2020.** The coronavirus mortality rate varies significantly by country. In this post, I look at the mortality rates for ten countries and assess factors that affect these numbers. After discussing the trends, I provide a rough estimate for where the actual fatality rate might lie. [Read more…] about Coronavirus Mortality Rates by Country

# Basics

## Coronavirus: Exponential Growth and Hospital Beds

**UPDATED March 24, 2020**: As the number of confirmed coronavirus cases continues to grow exponentially, the capacity of the hospital system to treat these cases is becoming a concern. The goal of “flattening the curve” is that testing, isolation, and social distancing will slow the increase of new cases. Hopefully, these efforts reduce the numbers of new patients who require hospitalization to a rate that hospitals can handle.

In this post, I’ll identify the top 10 states in the United States that have the greatest likelihood of experiencing hospital capacity problems if coronavirus cases continue to grow exponentially. To recognize these states, I’ll assess per capita rates for both coronavirus infections and hospital beds. I’m looking for states that have a relatively large number of coronavirus cases given the size of their population and have a relatively low number of hospital beds. [Read more…] about Coronavirus: Exponential Growth and Hospital Beds

## Coronavirus Curves and Different Outcomes

**UPDATED April 3, 2020**. Updated daily. The coronavirus, or COVID19, has swept around the world. However, not all countries have had the same experiences. Outcomes have varied by the number of cases, the rate of increase, and how countries have responded.

In this post, I present coronavirus growth curves for 14 countries and their per capita values, graph their new cases per day, daily coronavirus deaths, and describe how each country approached controlling the virus. You can see the differences in outcomes and when the effects of coronavirus mitigation efforts started taking effect. I also include the per capita values for these countries in a table near the end.

At this time, there is plenty of good news with evidence that many of the 14 countries have slowed the growth rate of new cases. However, one country is a notable exception because it has an accelerating rate while several other countries show troubling signs that they might be starting a phase of exponential growth. [Read more…] about Coronavirus Curves and Different Outcomes

## Guidelines for Removing and Handling Outliers in Data

Outliers are unusual values in your dataset, and they can distort statistical analyses and violate their assumptions. Unfortunately, all analysts will confront outliers and be forced to make decisions about what to do with them. Given the problems they can cause, you might think that it’s best to remove them from your data. But, that’s not always the case. Removing outliers is legitimate only for specific reasons. [Read more…] about Guidelines for Removing and Handling Outliers in Data

## 5 Ways to Find Outliers in Your Data

Outliers are data points that are far from other data points. In other words, they’re unusual values in a dataset. Outliers are problematic for many statistical analyses because they can cause tests to either miss significant findings or distort real results.

Unfortunately, there are no strict statistical rules for definitively identifying outliers. Finding outliers depends on subject-area knowledge and an understanding of the data collection process. While there is no solid mathematical definition, there are guidelines and statistical tests you can use to find outlier candidates. [Read more…] about 5 Ways to Find Outliers in Your Data

## New eBook Release! Introduction to Statistics: An Intuitive Guide

I’m thrilled to release my new ebook! *Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries*. [Read more…] about New eBook Release! Introduction to Statistics: An Intuitive Guide

## Causation versus Correlation in Statistics

Causation indicates that an event affects an outcome. Do fatty diets cause heart problems? If you study for a test, does it cause you to get a higher score?

In statistics, causation is a bit tricky. As you’ve no doubt heard, correlation doesn’t necessarily imply causation. An association or correlation between variables simply indicates that the values vary together. It does not necessarily suggest that changes in one variable cause changes in the other variable. Proving causality can be difficult.

If correlation does not prove causation, what statistical test do you use to assess causality? That’s a trick question because no statistical analysis can make that determination. In this post, learn about why you want to determine causation and how to do that. [Read more…] about Causation versus Correlation in Statistics

## Observational Studies Explained

Observational studies use samples to draw conclusions about a population when the researchers do not control the treatment, or independent variable, that relates to the primary research question.

In my previous post, I show how random assignment reduces systematic differences between experimental groups at the beginning of the study, which increases your confidence that the treatments caused any differences between groups you observe at the end of the study.

Unfortunately, using random assignment is not always possible. For these cases, you can conduct an observational study. In this post, learn about observational studies, why these studies must account for confounding variables, and how to do so. I’ll close this post by reviewing a published observational study about vitamin supplement usage. [Read more…] about Observational Studies Explained

## Random Assignment in Experiments

Random assignment uses chance to assign subjects to the control and treatment groups in an experiment. This process helps ensure that the groups are equivalent at the beginning of the study, which makes it safer to assume the treatments caused any differences between groups that the experimenters observe at the end of the study. [Read more…] about Random Assignment in Experiments

## 5 Steps for Conducting Scientific Studies with Statistical Analyses

The scientific method is a proven procedure for expanding knowledge through experimentation and analysis. It is a process that uses careful planning, rigorous methodology, and thorough assessment. Statistical analysis plays an essential role in this process.

In an experiment that includes statistical analysis, the analysis is at the end of a long series of events. To obtain valid results, it’s crucial that you carefully plan and conduct a scientific study for all steps up to and including the analysis. In this blog post, I map out five steps for scientific studies that include statistical analyses. [Read more…] about 5 Steps for Conducting Scientific Studies with Statistical Analyses

## Percentiles: Interpretations and Calculations

Percentiles indicate the percentage of scores that fall below a particular value. They tell you where a score stands relative to other scores. For example, a person with an IQ of 120 is at the 91^{st }percentile, which indicates that their IQ is higher than 91 percent of other scores.

Percentiles are a great tool to use when you need to know the relative standing of a value. Where does a value fall within a distribution of values? While the concept behind percentiles is straight forward, there are different mathematical methods for calculating them. In this post, learn about percentiles, special percentiles and their surprisingly flexible uses, and the various procedures for calculating them. [Read more…] about Percentiles: Interpretations and Calculations

## Using Histograms to Understand Your Data

Histograms are graphs that display the distribution of your continuous data. They are fantastic exploratory tools because they reveal properties about your sample data in ways that summary statistics cannot. For instance, while the mean and standard deviation can numerically summarize your data, histograms bring your sample data to life.

In this blog post, I’ll show you how histograms reveal the shape of the distribution, its central tendency, and the spread of values in your sample data. You’ll also learn how to identify outliers, how histograms relate to probability distribution functions, and why you might need to use hypothesis tests with them.

[Read more…] about Using Histograms to Understand Your Data

## Boxplots vs. Individual Value Plots: Graphing Continuous Data by Groups

Graphing your data before performing statistical analysis is a crucial step. Graphs bring your data to life in a way that statistical measures do not because they display the relationships and patterns. In this blog post, you’ll learn about using boxplots and individual value plots to compare distributions of continuous measurements between groups. You’ll also learn why you need to pair these plots with hypothesis tests when you want to make inferences about a population. [Read more…] about Boxplots vs. Individual Value Plots: Graphing Continuous Data by Groups

## Central Limit Theorem Explained

The central limit theorem in statistics states that, given a sufficiently large sample size, the sampling distribution of the mean for a variable will approximate a normal distribution regardless of that variable’s distribution in the population.

Unpacking the meaning from that complex definition can be difficult. That’s the topic for this post! I’ll walk you through the various aspects of the central limit theorem (CLT) definition, and show you why it is so important in the field of statistics. [Read more…] about Central Limit Theorem Explained

## Assessing Normality: Histograms vs. Normal Probability Plots

Because histograms display the shape and spread of distributions, you might think they’re the best type of graph for determining whether your data are normally distributed. However, I’ll show you how histograms can trick you! Normal probability plots are a better choice for this task and they are easy to use.

[Read more…] about Assessing Normality: Histograms vs. Normal Probability Plots

## Sample Statistics Are Always Wrong (to Some Extent)!

Here’s some shocking information for you—sample statistics are *always* wrong! When you use samples to estimate the properties of populations, you never obtain the correct values exactly. Don’t worry. I’ll help you navigate this issue using a simple statistical tool! [Read more…] about Sample Statistics Are Always Wrong (to Some Extent)!

## Populations, Parameters, and Samples in Inferential Statistics

Inferential statistics lets you draw conclusions about populations by using small samples. Consequently, inferential statistics provide enormous benefits because typically you can’t measure an entire population.

However, to gain these benefits, you must understand the relationship between populations, subpopulations, population parameters, samples, and sample statistics.

In this blog post, I discuss these concepts, and how to obtain representative samples using random sampling.

**Related post**: Difference between Descriptive and Inferential Statistics

[Read more…] about Populations, Parameters, and Samples in Inferential Statistics

## Normal Distribution in Statistics

The normal distribution is the most important probability distribution in statistics because it fits many natural phenomena. For example, heights, blood pressure, measurement error, and IQ scores follow the normal distribution. It is also known as the Gaussian distribution and the bell curve.

The normal distribution is a probability function that describes how the values of a variable are distributed. It is a symmetric distribution where most of the observations cluster around the central peak and the probabilities for values further away from the mean taper off equally in both directions. Extreme values in both tails of the distribution are similarly unlikely.

In this blog post, you’ll learn how to use the normal distribution, its parameters, and how to calculate Z-scores to standardize your data and find probabilities. [Read more…] about Normal Distribution in Statistics

## Understanding Probability Distributions

A probability distribution is a function that describes the likelihood of obtaining the possible values that a random variable can assume. In other words, the values of the variable vary based on the underlying probability distribution.

Suppose you draw a random sample and measure the heights of the subjects. As you measure heights, you can create a distribution of heights. This type of distribution is useful when you need to know which outcomes are most likely, the spread of potential values, and the likelihood of different results.

In this blog post, you’ll learn about probability distributions for both discrete and continuous variables. I’ll show you how they work and examples of how to use them. [Read more…] about Understanding Probability Distributions

## Interpreting Correlation Coefficients

A correlation between variables indicates that as one variable changes in value, the other variable tends to change in a specific direction. Understanding that relationship is useful because we can use the value of one variable to predict the value of the other variable. For example, height and weight are correlated—as height increases, weight also tends to increase. Consequently, if we observe an individual who is unusually tall, we can predict that his weight is also above the average. [Read more…] about Interpreting Correlation Coefficients