Moderna has announced encouraging preliminary results for their COVID-19 vaccine. In this post, I assess the available data and explain what the vaccine’s effectiveness really means. I also look at Moderna’s experimental design and examine how it incorporates statistical procedures and concepts that I discuss throughout my blog posts and books. [Read more…] about Assessing a COVID-19 Vaccination Experiment and Its Results
Hypothesis Testing
P-Values, Error Rates, and False Positives
In my post about how to interpret p-values, I emphasize that p-values are not an error rate. The number one misinterpretation of p-values is that they are the probability of the null hypothesis being correct.
The correct interpretation is that p-values indicate the probability of observing your sample data, or more extreme, when you assume the null hypothesis is true. If you don’t solidly grasp that correct interpretation, please take a moment to read that post first.
Hopefully, that’s clear.
Unfortunately, one part of that blog post confuses some readers. In that post, I explain how p-values are not a probability, or error rate, of a hypothesis. I then show how that misinterpretation is dangerous because it overstates the evidence against the null hypothesis. [Read more…] about P-Values, Error Rates, and False Positives
New eBook Release! Hypothesis Testing: An Intuitive Guide
I’m thrilled to release my new ebook! Hypothesis Testing: An Intuitive Guide for Making Data Driven Decisions. [Read more…] about New eBook Release! Hypothesis Testing: An Intuitive Guide
Failing to Reject the Null Hypothesis
Failing to reject the null hypothesis is an odd way to state that the results of your hypothesis test are not statistically significant. Why the peculiar phrasing? “Fail to reject” sounds like one of those double negatives that writing classes taught you to avoid. What does it mean exactly? There’s an excellent reason for the odd wording!
In this post, learn what it means when you fail to reject the null hypothesis and why that’s the correct wording. While accepting the null hypothesis sounds more straightforward, it is not statistically correct! [Read more…] about Failing to Reject the Null Hypothesis
Understanding Significance Levels in Statistics
Significance levels in statistics are a crucial component of hypothesis testing. However, unlike other values in your statistical output, the significance level is not something that statistical software calculates. Instead, you choose the significance level. Have you ever wondered why?
In this post, I’ll explain the significance level conceptually, why you choose its value, and how to choose a good value. Statisticians also refer to the significance level as alpha (α). [Read more…] about Understanding Significance Levels in Statistics
How the Chi-Squared Test of Independence Works
Chi-squared tests of independence determine whether a relationship exists between two categorical variables. Do the values of one categorical variable depend on the value of the other categorical variable? If the two variables are independent, knowing the value of one variable provides no information about the value of the other variable.
I’ve previously written about Pearson’s chi-square test of independence using a fun Star Trek example. Are the uniform colors related to the chances of dying? You can test the notion that the infamous red shirts have a higher likelihood of dying. In that post, I focus on the purpose of the test, applied it to this example, and interpreted the results.
In this post, I’ll take a bit of a different approach. I’ll show you the nuts and bolts of how to calculate the expected values, chi-square value, and degrees of freedom. Then you’ll learn how to use the chi-squared distribution in conjunction with the degrees of freedom to calculate the p-value. [Read more…] about How the Chi-Squared Test of Independence Works
How to Test Variances in Excel
Use a variances test to determine whether the variability of two groups differs. In this post, we’ll work through a two-sample variances test that Excel provides. Even if Excel isn’t your primary statistical software, this post provides an excellent introduction to variance tests. Excel refers to this analysis as F-Test Two-Sample for Variances. [Read more…] about How to Test Variances in Excel
How to do t-Tests in Excel
Excel can perform various statistical analyses, including t-tests. It is an excellent option because nearly everyone can access Excel. This post is a great introduction to performing and interpreting t-tests even if Excel isn’t your primary statistical software package.
In this post, I provide step-by-step instructions for using Excel to perform t-tests. Importantly, I also show you how to select the correct form of t-test, choose the right options, and interpret the results. I also include links to additional resources I’ve written, which present clear explanations of relevant t-test concepts that you won’t find in Excel’s documentation. And, I use an example dataset for us to work through and interpret together! [Read more…] about How to do t-Tests in Excel
Low Power Tests Exaggerate Effect Sizes
If your study has low statistical power, it will exaggerate the effect size. What?!
Statistical power is the ability of a hypothesis test to detect an effect that exists in the population. Clearly, a high-powered study is a good thing just for being able to identify these effects. Low power reduces your chances of discovering real findings. However, many analysts don’t realize that low power also inflates the effect size.
In this post, I show how this unexpected relationship between power and exaggerated effect sizes exists. I’ll also tie it to other issues, such as the bias of effects published in journals and other matters about statistical power. I think this post will be eye-opening and thought provoking! As always, I’ll use many graphs rather than equations. [Read more…] about Low Power Tests Exaggerate Effect Sizes
Revisiting the Monty Hall Problem with Hypothesis Testing
The Monty Hall Problem is where Monty presents you with three doors, one of which contains a prize. He asks you to pick one door, which remains closed. Monty opens one of the other doors that does not have the prize. This process leaves two unopened doors—your original choice and one other. He allows you to switch from your initial choice to the other unopened door. Do you accept the offer?
If you accept his offer to switch doors, you’re twice as likely to win—66% versus 33%—than if you stay with your original choice.
Mind-blowing, right?
The solution to the Monty Hall Problem is tricky and counter-intuitive. It did trip up many experts back in the 1980s. However, the correct answer to the Monty Hall Problem is now well established using a variety of methods. It has been proven mathematically, with computer simulations, and empirical experiments, including on television by both the Mythbusters (CONFIRMED!) and James Mays’ Man Lab. You won’t find any statisticians who disagree with the solution.
In this post, I’ll explore aspects of this problem that have arisen in discussions with some stubborn resisters to the notion that you can increase your chances of winning by switching!
The Monty Hall problem provides a fun way to explore issues that relate to hypothesis testing. I’ve got a lot of fun lined up for this post, including the following!
- Using a computer simulation to play the game 10,000 times.
- Assessing sampling distributions to compare the 66% percent hypothesis to another contender.
- Performing a power and sample size analysis to determine the number of times you need to play the Monty Hall game to get an answer.
- Conducting an experiment by playing the game repeatedly myself, record the results, and use a proportions hypothesis test to draw conclusions! [Read more…] about Revisiting the Monty Hall Problem with Hypothesis Testing
Using Confidence Intervals to Compare Means
To determine whether the difference between two means is statistically significant, analysts often compare the confidence intervals for those groups. If those intervals overlap, they conclude that the difference between groups is not statistically significant. If there is no overlap, the difference is significant.
While this visual method of assessing the overlap is easy to perform, regrettably it comes at the cost of reducing your ability to detect differences. Fortunately, there is a simple solution to this problem that allows you to perform a simple visual assessment and yet not diminish the power of your analysis.
In this post, I’ll start by showing you the problem in action and explain why it happens. Then, we’ll proceed to an easy alternative method that avoids this problem. [Read more…] about Using Confidence Intervals to Compare Means
Can High P-values Be Meaningful?
Can high p-values be helpful? What do high p-values mean?
Typically, when you perform a hypothesis test, you want to obtain low p-values that are statistically significant. Low p-values are sexy. They represent exciting findings and can help you get articles published.
However, you might be surprised to learn that higher p-values, the ones that are not statistically significant, are also valuable. In this post, I’ll show you the potential value of a p-value that is greater than 0.05, or whatever significance level you’re using. [Read more…] about Can High P-values Be Meaningful?
When Can I Use One-Tailed Hypothesis Tests?
One-tailed hypothesis tests offer the promise of more statistical power compared to an equivalent two-tailed design. While there is some debate about when you can use a one-tailed test, the general consensus among statisticians is that you should use two-tailed tests unless you have concrete reasons for using a one-tailed test.
In this post, I discuss when you should and should not use one-tailed tests. I’ll cover the different schools of thought and offer my own opinion. [Read more…] about When Can I Use One-Tailed Hypothesis Tests?
One-Tailed and Two-Tailed Hypothesis Tests Explained
Choosing whether to perform a one-tailed or a two-tailed hypothesis test is one of the methodology decisions you might need to make for your statistical analysis. This choice can have critical implications for the types of effects it can detect, the statistical power of the test, and potential errors.
In this post, you’ll learn about the differences between one-tailed and two-tailed hypothesis tests and their advantages and disadvantages. I include examples of both types of statistical tests. In my next post, I cover the decision between one and two-tailed tests in more detail.
[Read more…] about One-Tailed and Two-Tailed Hypothesis Tests Explained
Introduction to Bootstrapping in Statistics with an Example
Bootstrapping is a statistical procedure that resamples a single dataset to create many simulated samples. This process allows you to calculate standard errors, construct confidence intervals, and perform hypothesis testing for numerous types of sample statistics. Bootstrap methods are alternative approaches to traditional hypothesis testing and are notable for being easier to understand and valid for more conditions.
In this blog post, I explain bootstrapping basics, compare bootstrapping to conventional statistical methods, and explain when it can be the better method. Additionally, I’ll work through an example using real data to create bootstrapped confidence intervals. [Read more…] about Introduction to Bootstrapping in Statistics with an Example
Types of Errors in Hypothesis Testing
Hypothesis tests use sample data to make inferences about the properties of a population. You gain tremendous benefits by working with random samples because it is usually impossible to measure the entire population.
However, there are tradeoffs when you use samples. The samples we use are typically a minuscule percentage of the entire population. Consequently, they occasionally misrepresent the population severely enough to cause hypothesis tests to make errors.
In this blog post, you will learn about the two types of errors in hypothesis testing, their causes, and how to manage them. [Read more…] about Types of Errors in Hypothesis Testing
Practical vs. Statistical Significance
You’ve just performed a hypothesis test and your results are statistically significant. Hurray! These results are important, right? Not so fast. Statistical significance does not necessarily mean that the results are practically significant in a real-world sense of importance.
In this blog post, I’ll talk about the differences between practical significance and statistical significance, and how to determine if your results are meaningful in the real world.
[Read more…] about Practical vs. Statistical Significance
Estimating a Good Sample Size for Your Study Using Power Analysis
Determining a good sample size for a study is always an important issue. After all, using the wrong sample size can doom your study from the start. Fortunately, power analysis can find the answer for you. Power analysis combines statistical analysis, subject-area knowledge, and your requirements to help you derive the optimal sample size for your study.
Statistical power in a hypothesis test is the probability that the test will detect an effect that actually exists. As you’ll see in this post, both under-powered and over-powered studies are problematic. Let’s learn how to find a good sample size for your study! [Read more…] about Estimating a Good Sample Size for Your Study Using Power Analysis
Comparing Hypothesis Tests for Continuous, Binary, and Count Data
In a previous blog post, I introduced the basic concepts of hypothesis testing and explained the need for performing these tests. In this post, I’ll build on that and compare various types of hypothesis tests that you can use with different types of data, explore some of the options, and explain how to interpret the results. Along the way, I’ll point out important planning considerations, related analyses, and pitfalls to avoid. [Read more…] about Comparing Hypothesis Tests for Continuous, Binary, and Count Data
Statistical Hypothesis Testing Overview
In this blog post, I explain why you need to use statistical hypothesis testing and help you navigate the essential terminology. Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables.