• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar
  • My Store
  • Glossary
  • Home
  • About Me
  • Contact Me

Statistics By Jim

Making statistics intuitive

  • Graphs
  • Basics
  • Hypothesis Testing
  • Regression
  • ANOVA
  • Probability
  • Time Series
  • Fun

analysis example

How the Chi-Squared Test of Independence Works

By Jim Frost 21 Comments

Chi-squared tests of independence determine whether a relationship exists between two categorical variables. Do the values of one categorical variable depend on the value of the other categorical variable? If the two variables are independent, knowing the value of one variable provides no information about the value of the other variable.

I’ve previously written about Pearson’s chi-square test of independence using a fun Star Trek example. Are the uniform colors related to the chances of dying? You can test the notion that the infamous red shirts have a higher likelihood of dying. In that post, I focus on the purpose of the test, applied it to this example, and interpreted the results.

In this post, I’ll take a bit of a different approach. I’ll show you the nuts and bolts of how to calculate the expected values, chi-square value, and degrees of freedom. Then you’ll learn how to use the chi-squared distribution in conjunction with the degrees of freedom to calculate the p-value. [Read more…] about How the Chi-Squared Test of Independence Works

Filed Under: Hypothesis Testing Tagged With: analysis example, distributions, interpreting results

How to Test Variances in Excel

By Jim Frost 7 Comments

Use a variances test to determine whether the variability of two groups differs. In this post, we’ll work through a two-sample variances test that Excel provides. Even if Excel isn’t your primary statistical software, this post provides an excellent introduction to variance tests. Excel refers to this analysis as F-Test Two-Sample for Variances. [Read more…] about How to Test Variances in Excel

Filed Under: Hypothesis Testing Tagged With: analysis example, Excel, interpreting results

How to do Two-Way ANOVA in Excel

By Jim Frost 30 Comments

Use two-way ANOVA to assess differences between the group means that are defined by two categorical factors. In this post, we’ll work through two-way ANOVA using Excel. Even if Excel isn’t your main statistical package, this post is an excellent introduction to two-way ANOVA. Excel refers to this analysis as two factor ANOVA. [Read more…] about How to do Two-Way ANOVA in Excel

Filed Under: ANOVA Tagged With: analysis example, Excel, interpreting results

5 Ways to Find Outliers in Your Data

By Jim Frost 35 Comments

Outliers are data points that are far from other data points. In other words, they’re unusual values in a dataset. Outliers are problematic for many statistical analyses because they can cause tests to either miss significant findings or distort real results.

Unfortunately, there are no strict statistical rules for definitively identifying outliers. Finding outliers depends on subject-area knowledge and an understanding of the data collection process. While there is no solid mathematical definition, there are guidelines and statistical tests you can use to find outlier candidates. [Read more…] about 5 Ways to Find Outliers in Your Data

Filed Under: Basics Tagged With: analysis example, conceptual, graphs

How to do One-Way ANOVA in Excel

By Jim Frost 23 Comments

Use one-way ANOVA to test whether the means of at least three groups are different. Excel refers to this test as Single Factor ANOVA. This post is an excellent introduction to performing and interpreting a one-way ANOVA test even if Excel isn’t your primary statistical software package. [Read more…] about How to do One-Way ANOVA in Excel

Filed Under: ANOVA Tagged With: analysis example, Excel, interpreting results

How to do t-Tests in Excel

By Jim Frost 114 Comments

Excel can perform various statistical analyses, including t-tests. It is an excellent option because nearly everyone can access Excel. This post is a great introduction to performing and interpreting t-tests even if Excel isn’t your primary statistical software package.

In this post, I provide step-by-step instructions for using Excel to perform t-tests. Importantly, I also show you how to select the correct form of t-test, choose the right options, and interpret the results. I also include links to additional resources I’ve written, which present clear explanations of relevant t-test concepts that you won’t find in Excel’s documentation. And, I use an example dataset for us to work through and interpret together! [Read more…] about How to do t-Tests in Excel

Filed Under: Hypothesis Testing Tagged With: analysis example, Excel, interpreting results

Revisiting the Monty Hall Problem with Hypothesis Testing

By Jim Frost 12 Comments

The Monty Hall Problem is where Monty presents you with three doors, one of which contains a prize. He asks you to pick one door, which remains closed. Monty opens one of the other doors that does not have the prize. This process leaves two unopened doors—your original choice and one other. He allows you to switch from your initial choice to the other unopened door. Do you accept the offer?

If you accept his offer to switch doors, you’re twice as likely to win—66% versus 33%—than if you stay with your original choice.

Mind-blowing, right?

The solution to the Monty Hall Problem is tricky and counter-intuitive. It did trip up many experts back in the 1980s. However, the correct answer to the Monty Hall Problem is now well established using a variety of methods. It has been proven mathematically, with computer simulations, and empirical experiments, including on television by both the Mythbusters (CONFIRMED!) and James Mays’ Man Lab. You won’t find any statisticians who disagree with the solution.

In this post, I’ll explore aspects of this problem that have arisen in discussions with some stubborn resisters to the notion that you can increase your chances of winning by switching!

The Monty Hall problem provides a fun way to explore issues that relate to hypothesis testing. I’ve got a lot of fun lined up for this post, including the following!

  • Using a computer simulation to play the game 10,000 times.
  • Assessing sampling distributions to compare the 66% percent hypothesis to another contender.
  • Performing a power and sample size analysis to determine the number of times you need to play the Monty Hall game to get an answer.
  • Conducting an experiment by playing the game repeatedly myself, record the results, and use a proportions hypothesis test to draw conclusions! [Read more…] about Revisiting the Monty Hall Problem with Hypothesis Testing

Filed Under: Hypothesis Testing Tagged With: analysis example, conceptual, distributions, interpreting results

Using Post Hoc Tests with ANOVA

By Jim Frost 125 Comments

Post hoc tests are an integral part of ANOVA. When you use ANOVA to test the equality of at least three group means, statistically significant results indicate that not all of the group means are equal. However, ANOVA results do not identify which particular differences between pairs of means are significant. Use post hoc tests to explore differences between multiple group means while controlling the experiment-wise error rate.

In this post, I’ll show you what post hoc analyses are, the critical benefits they provide, and help you choose the correct one for your study. Additionally, I’ll show why failure to control the experiment-wise error rate will cause you to have severe doubts about your results. [Read more…] about Using Post Hoc Tests with ANOVA

Filed Under: ANOVA Tagged With: analysis example, choosing analysis, conceptual, graphs, interpreting results

One-Tailed and Two-Tailed Hypothesis Tests Explained

By Jim Frost 60 Comments

Choosing whether to perform a one-tailed or a two-tailed hypothesis test is one of the methodology decisions you might need to make for your statistical analysis. This choice can have critical implications for the types of effects it can detect, the statistical power of the test, and potential errors.

In this post, you’ll learn about the differences between one-tailed and two-tailed hypothesis tests and their advantages and disadvantages. I include examples of both types of statistical tests. In my next post, I cover the decision between one and two-tailed tests in more detail.
[Read more…] about One-Tailed and Two-Tailed Hypothesis Tests Explained

Filed Under: Hypothesis Testing Tagged With: analysis example, conceptual, interpreting results

Introduction to Bootstrapping in Statistics with an Example

By Jim Frost 106 Comments

Bootstrapping is a statistical procedure that resamples a single dataset to create many simulated samples. This process allows you to calculate standard errors, construct confidence intervals, and perform hypothesis testing for numerous types of sample statistics. Bootstrap methods are alternative approaches to traditional hypothesis testing and are notable for being easier to understand and valid for more conditions.

In this blog post, I explain bootstrapping basics, compare bootstrapping to conventional statistical methods, and explain when it can be the better method. Additionally, I’ll work through an example using real data to create bootstrapped confidence intervals. [Read more…] about Introduction to Bootstrapping in Statistics with an Example

Filed Under: Hypothesis Testing Tagged With: analysis example, assumptions, choosing analysis, conceptual, distributions, graphs, interpreting results

How to Calculate Sample Size Needed for Power

By Jim Frost 67 Comments

Determining a good sample size for a study is always an important issue. After all, using the wrong sample size can doom your study from the start. Fortunately, power analysis can find the answer for you. Power analysis combines statistical analysis, subject-area knowledge, and your requirements to help you derive the optimal sample size for your study.

Statistical power in a hypothesis test is the probability that the test will detect an effect that actually exists. As you’ll see in this post, both under-powered and over-powered studies are problematic. Let’s learn how to find a good sample size for your study! Learn more about Statistical Power. [Read more…] about How to Calculate Sample Size Needed for Power

Filed Under: Hypothesis Testing Tagged With: analysis example, conceptual, graphs, interpreting results

Understanding Interaction Effects in Statistics

By Jim Frost 480 Comments

What are Interaction Effects?

An interaction effect occurs when the effect of one variable depends on the value of another variable. Interaction effects are common in regression models, ANOVA, and designed experiments. In this post, I explain interaction effects, the interaction effect test, how to interpret interaction models, and describe the problems you can face if you don’t include them in your model. [Read more…] about Understanding Interaction Effects in Statistics

Filed Under: Regression Tagged With: analysis example, conceptual, graphs, interpreting results

Using Log-Log Plots to Determine Whether Size Matters

By Jim Frost 3 Comments

Log-log plots display data in two dimensions where both axes use logarithmic scales. When one variable changes as a constant power of another, a log-log graph shows the relationship as a straight line. In this post, I’ll show you why these graphs are valuable and how to interpret them. [Read more…] about Using Log-Log Plots to Determine Whether Size Matters

Filed Under: Regression Tagged With: analysis example, graphs, interpreting results

When Do You Need to Standardize the Variables in a Regression Model?

By Jim Frost 76 Comments

Standardization is the process of putting different variables on the same scale. In regression analysis, there are some scenarios where it is crucial to standardize your independent variables or risk obtaining misleading results.

In this blog post, I show when and why you need to standardize your variables in regression analysis. Don’t worry, this process is simple and helps ensure that you can trust your results. In fact, standardizing your variables can reveal essential findings that you would otherwise miss! [Read more…] about When Do You Need to Standardize the Variables in a Regression Model?

Filed Under: Regression Tagged With: analysis example, interpreting results

Flu Shots, How Effective Are They?

By Jim Frost

With the arrival of Fall in the Northern hemisphere, it’s flu season again.

Do you debate getting a flu shot every year? I do get flu shots every year. I realize that they’re not perfect, but I figure they’re a low-cost way to reduce my chances of a crummy week suffering from the flu.

The media report that flu shots have an effectiveness of approximately 68%. But what does that mean exactly? What is the absolute reduction in risk? Are there long-term benefits?

In this blog post, I explore the effectiveness of flu shots from a statistical viewpoint. We’ll statistically analyze the data ourselves to go beyond the simplified accounts that the media presents. I’ll also model the long-term outcomes you can expect with regular flu vaccinations. By the time you finish this post, you’ll have a crystal clear picture of flu shot effectiveness. Some of the results surprised me! [Read more…] about Flu Shots, How Effective Are They?

Filed Under: Hypothesis Testing Tagged With: analysis example, distributions, graphs, interpreting results

Understand Precision in Predictive Analytics to Avoid Costly Mistakes

By Jim Frost 9 Comments

Precision in predictive analytics refers to how close the model’s predictions are to the observed values. The more precise the model, the closer the data points are to the predictions. When you have an imprecise model, the observations tend to be further away from the predictions, thereby reducing the usefulness of the predictions. If you have a model that is not sufficiently precise, you risk making costly mistakes! [Read more…] about Understand Precision in Predictive Analytics to Avoid Costly Mistakes

Filed Under: Regression Tagged With: analysis example, conceptual, graphs, interpreting results

How to Choose Between Linear and Nonlinear Regression

By Jim Frost 32 Comments

As you fit regression models, you might need to make a choice between linear and nonlinear regression models. The field of statistics can be weird. Despite their names, both forms of regression can fit curvature in your data. So, how do you choose? In this blog post, I show you how to choose between linear and nonlinear regression models. [Read more…] about How to Choose Between Linear and Nonlinear Regression

Filed Under: Regression Tagged With: analysis example, assumptions, choosing analysis, conceptual, interpreting results

Comparing Regression Lines with Hypothesis Tests

By Jim Frost 71 Comments


How do you compare regression lines statistically? Imagine you are studying the relationship between height and weight and want to determine whether this relationship differs between basketball players and non-basketball players. You can graph the two regression lines to see if they look different. However, you should perform hypothesis tests to determine whether the visible differences are statistically significant. In this blog post, I show you how to determine whether the differences between coefficients and constants in different regression models are statistically significant. [Read more…] about Comparing Regression Lines with Hypothesis Tests

Filed Under: Regression Tagged With: analysis example, conceptual, interpreting results

Identifying the Most Important Independent Variables in Regression Models

By Jim Frost 73 Comments


You’ve settled on a regression model that contains independent variables that are statistically significant. By interpreting the statistical results, you can understand how changes in the independent variables are related to shifts in the dependent variable. At this point, it’s natural to wonder, “Which independent variable is the most important?” [Read more…] about Identifying the Most Important Independent Variables in Regression Models

Filed Under: Regression Tagged With: analysis example, conceptual, interpreting results

Using Data Mining to Select Regression Models Can Create Serious Problems

By Jim Frost 13 Comments


Data mining and regression seem to go together naturally. I’ve described regression as a seductive analysis because it is so tempting and so easy to add more variables in the pursuit of a larger R-squared. In this post, I’ll begin by illustrating the problems that data mining creates. To do this, I’ll show how data mining with regression analysis can take randomly generated data and produce a misleading model that appears to have significant variables and a good R-squared. Then, I’ll explain how data mining creates these deceptive results and how to avoid them. [Read more…] about Using Data Mining to Select Regression Models Can Create Serious Problems

Filed Under: Regression Tagged With: analysis example, conceptual, interpreting results

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Go to Next Page »

Primary Sidebar

Meet Jim

I’ll help you intuitively understand statistics by focusing on concepts and using plain English so you can concentrate on understanding your results.

Read More...

Buy My Introduction to Statistics Book!

Cover of my Introduction to Statistics: An Intuitive Guide ebook.

Buy My Hypothesis Testing Book!

Cover image of my Hypothesis Testing: An Intuitive Guide ebook.

Buy My Regression Book!

Cover for my ebook, Regression Analysis: An Intuitive Guide for Using and Interpreting Linear Models.

Subscribe by Email

Enter your email address to receive notifications of new posts by email.

    I won't send you spam. Unsubscribe at any time.

    Follow Me

    • FacebookFacebook
    • RSS FeedRSS Feed
    • TwitterTwitter

    Top Posts

    • How to Interpret P-values and Coefficients in Regression Analysis
    • How To Interpret R-squared in Regression Analysis
    • How to do t-Tests in Excel
    • Z-table
    • Multicollinearity in Regression Analysis: Problems, Detection, and Solutions
    • How to Find the P value: Process and Calculations
    • F-table
    • How to Interpret the F-test of Overall Significance in Regression Analysis
    • Mean, Median, and Mode: Measures of Central Tendency
    • One-Tailed and Two-Tailed Hypothesis Tests Explained

    Recent Posts

    • Sampling Frame: Definition & Examples
    • Probability Mass Function: Definition, Uses & Example
    • Using Scientific Notation
    • Selection Bias: Definition & Examples
    • ANCOVA: Uses, Assumptions & Example
    • Fibonacci Sequence: Formula & Uses

    Recent Comments

    • Jim Frost on Beta Distribution: Uses, Parameters & Examples
    • Norman Abraham on Beta Distribution: Uses, Parameters & Examples
    • Morris on Validity in Research and Psychology: Types & Examples
    • Jim Frost on What are Robust Statistics?
    • Allan Fraser on What are Robust Statistics?

    Copyright © 2023 · Jim Frost · Privacy Policy