• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • About Me
  • Contact Me

Statistics By Jim

Making statistics intuitive

  • Basics
  • Hypothesis Testing
  • Regression
  • ANOVA
  • Probability
  • Time Series
  • Fun
  • Glossary
  • My Store

Blog

Chebyshev’s Theorem in Statistics

By Jim Frost 4 Comments

Chebyshev’s Theorem estimates the minimum proportion of observations that fall within a specified number of standard deviations from the mean. This theorem applies to a broad range of probability distributions. Chebyshev’s Theorem is also known as Chebyshev’s Inequality. [Read more…] about Chebyshev’s Theorem in Statistics

Filed Under: Basics Tagged With: choosing analysis, distributions, probability

Using Permutations to Calculate Probabilities

By Jim Frost 6 Comments

Permutations in probability theory and other branches of mathematics refer to sequences of outcomes where the order matters. For example, 9-6-8-4 is a permutation of a four-digit PIN because the order of numbers is crucial. When calculating probabilities, it’s frequently necessary to calculate the number of possible permutations to determine an event’s probability.

In this post, I explain permutations and show how to calculate the number of permutations both with repetition and without repetition. Finally, we’ll work through a step-by-step example problem that uses permutations to calculate a probability. [Read more…] about Using Permutations to Calculate Probabilities

Filed Under: Probability Tagged With: analysis example, choosing analysis, conceptual

Understanding Historians’ Rankings of U.S. Presidents using Regression Models

By Jim Frost 6 Comments

Historians rank the U.S. Presidents from best to worse using all the historical knowledge at their disposal. Frequently, groups, such as C-Span, ask these historians to rank the Presidents and average the results together to help reduce bias. The idea is to produce a set of rankings that incorporates a broad range of historians, a vast array of information, and a historical perspective. These rankings include informed assessments of each President’s effectiveness, leadership, moral authority, administrative skills, economic management, vision, and so on. [Read more…] about Understanding Historians’ Rankings of U.S. Presidents using Regression Models

Filed Under: Regression Tagged With: analysis example, graphs, interpreting results

Spearman’s Correlation Explained

By Jim Frost 15 Comments

Spearman’s correlation in statistics is a nonparametric alternative to Pearson’s correlation. Use Spearman’s correlation for data that follow curvilinear, monotonic relationships and for ordinal data. Statisticians also refer to Spearman’s rank order correlation coefficient as Spearman’s ρ (rho).

In this post, I’ll cover what all that means so you know when and why you should use Spearman’s correlation instead of the more common Pearson’s correlation. [Read more…] about Spearman’s Correlation Explained

Filed Under: Basics Tagged With: analysis example, choosing analysis, conceptual, data types, Excel, graphs

Effect Sizes in Statistics

By Jim Frost 8 Comments

Effect sizes in statistics quantify the differences between group means and the relationships between variables. While analysts often focus on statistical significance using p-values, effect sizes determine the practical importance of the findings. [Read more…] about Effect Sizes in Statistics

Filed Under: Basics Tagged With: conceptual

Proxy Variables: The Good Twin of Confounding Variables

By Jim Frost 6 Comments

Proxy variables are easily measurable variables that analysts include in a model in place of a variable that cannot be measured or is difficult to measure. Proxy variables can be something that is not of any great interest itself, but has a close correlation with the variable of interest. [Read more…] about Proxy Variables: The Good Twin of Confounding Variables

Filed Under: Regression Tagged With: conceptual

Multiplication Rule for Calculating Probabilities

By Jim Frost 7 Comments

The multiplication rule in probability allows you to calculate the probability of multiple events occurring together using known probabilities of those events individually. There are two forms of this rule, the specific and general multiplication rules.

In this post, learn about when and how to use both the specific and general multiplication rules. Additionally, I’ll use and explain the standard notation for probabilities throughout, helping you learn how to interpret it. We’ll work through several example problems so you can see them in action. There’s even a bonus problem at the end! [Read more…] about Multiplication Rule for Calculating Probabilities

Filed Under: Probability Tagged With: analysis example, choosing analysis, conceptual

Exponential Smoothing for Time Series Forecasting

By Jim Frost 4 Comments

Exponential smoothing is a forecasting method for univariate time series data. This method produces forecasts that are weighted averages of past observations where the weights of older observations exponentially decrease. Forms of exponential smoothing extend the analysis to model data with trends and seasonal components. [Read more…] about Exponential Smoothing for Time Series Forecasting

Filed Under: Time Series Tagged With: analysis example, graphs, interpreting results

Descriptive Statistics in Excel

By Jim Frost 22 Comments

Descriptive statistics summarize your dataset, painting a picture of its properties. These properties include various central tendency and variability measures, distribution properties, outlier detection, and other information. Unlike inferential statistics, descriptive statistics only describe your dataset’s characteristics and do not attempt to generalize from a sample to a population. [Read more…] about Descriptive Statistics in Excel

Filed Under: Basics Tagged With: analysis example, Excel, interpreting results

Using Contingency Tables to Calculate Probabilities

By Jim Frost 13 Comments

Contingency tables are a great way to classify outcomes and calculate different types of probabilities. These tables contain rows and columns that display bivariate frequencies of categorical data. Analysts also refer to contingency tables as crosstabulation (cross tabs), two-way tables, and frequency tables.

Statisticians use contingency tables for a variety of reasons. I love these tables because they both organize your data and allow you to answer a diverse set of questions. In this post, I focus on using them to calculate different types of probabilities. These probabilities include joint, marginal, and conditional probabilities. [Read more…] about Using Contingency Tables to Calculate Probabilities

Filed Under: Probability Tagged With: analysis example, conceptual

Probability Fundamentals

By Jim Frost 10 Comments

Probability theory analyzes the likelihood of events occurring. You can think of probabilities as being the following:

  • The long-term proportion of times an event occurs during a random process.
  • The propensity for a particular outcome to occur.

Common terms for describing probabilities include likelihood, chances, and odds. [Read more…] about Probability Fundamentals

Filed Under: Probability Tagged With: conceptual

Using Applied Statistics to Expand Human Knowledge

By Jim Frost 2 Comments

My background includes working on scientific projects as the data guy. In these positions, I was responsible for establishing valid data collection procedures, collecting usable data, and statistically analyzing and presenting the results. In this post, I describe the excitement of being a statistician helping expand the limits of human knowledge, what I learned about applied statistics and data analysis during the first big project in my career, and the challenges along the way! [Read more…] about Using Applied Statistics to Expand Human Knowledge

Filed Under: Basics

Variance Inflation Factors (VIFs)

By Jim Frost 15 Comments

Variance Inflation Factors (VIFs) measure the correlation among independent variables in least squares regression models. Statisticians refer to this type of correlation as multicollinearity. Excessive multicollinearity can cause problems for regression models.

In this post, I focus on VIFs and how they detect multicollinearity, why they’re better than pairwise correlations, how to calculate VIFs yourself, and interpreting VIFs. If you need a refresher about the types of problems that multicollinearity causes and how to fix them, read my post: Multicollinearity: Problems, Detection, and Solutions. [Read more…] about Variance Inflation Factors (VIFs)

Filed Under: Regression Tagged With: assumptions, conceptual, interpreting results

Assessing a COVID-19 Vaccination Experiment and Its Results

By Jim Frost 33 Comments

Moderna has announced encouraging preliminary results for their COVID-19 vaccine. In this post, I assess the available data and explain what the vaccine’s effectiveness really means. I also look at Moderna’s experimental design and examine how it incorporates statistical procedures and concepts that I discuss throughout my blog posts and books. [Read more…] about Assessing a COVID-19 Vaccination Experiment and Its Results

Filed Under: Hypothesis Testing Tagged With: coronavirus, interpreting results

P-Values, Error Rates, and False Positives

By Jim Frost 22 Comments

In my post about how to interpret p-values, I emphasize that p-values are not an error rate. The number one misinterpretation of p-values is that they are the probability of the null hypothesis being correct.

The correct interpretation is that p-values indicate the probability of observing your sample data, or more extreme, when you assume the null hypothesis is true. If you don’t solidly grasp that correct interpretation, please take a moment to read that post first.

Hopefully, that’s clear.

Unfortunately, one part of that blog post confuses some readers. In that post, I explain how p-values are not a probability, or error rate, of a hypothesis. I then show how that misinterpretation is dangerous because it overstates the evidence against the null hypothesis. [Read more…] about P-Values, Error Rates, and False Positives

Filed Under: Hypothesis Testing Tagged With: conceptual, probability

How to Perform Regression Analysis using Excel

By Jim Frost 14 Comments

Excel can perform various statistical analyses, including regression analysis. It is a great option because nearly everyone can access Excel. This post is an excellent introduction to performing and interpreting regression analysis, even if Excel isn’t your primary statistical software package.

[Read more…] about How to Perform Regression Analysis using Excel

Filed Under: Regression Tagged With: analysis example, Excel, interpreting results

Coefficient of Variation in Statistics

By Jim Frost 15 Comments

The coefficient of variation (CV) is a relative measure of variability that indicates the size of a standard deviation in relation to its mean. It is a standardized, unitless measure that allows you to compare variability between disparate groups and characteristics. It is also known as the relative standard deviation (RSD).

In this post, you will learn about the coefficient of variation, how to calculate it, know when it is particularly useful, and when to avoid it. [Read more…] about Coefficient of Variation in Statistics

Filed Under: Basics Tagged With: conceptual, distributions

Independent and Dependent Samples in Statistics

By Jim Frost 12 Comments

When comparing groups in your data, you can have either independent or dependent samples. The type of samples in your design impacts sample size requirements, statistical power, the proper analysis, and even your study’s costs. Understanding the implications of each type of sample can help you design a better study. [Read more…] about Independent and Dependent Samples in Statistics

Filed Under: Basics Tagged With: analysis example, choosing analysis, conceptual

Independent and Identically Distributed Data (IID)

By Jim Frost 4 Comments

Having independent and identically distributed (IID) data is a common assumption for statistical procedures and hypothesis tests. But what does that mouthful of words actually mean? That’s the topic of this post! And, I’ll provide helpful tips for determining whether your data are IID. [Read more…] about Independent and Identically Distributed Data (IID)

Filed Under: Basics Tagged With: assumptions, conceptual

Using Moving Averages to Smooth Time Series Data

By Jim Frost 9 Comments

Moving averages can smooth time series data, reveal underlying trends, and identify components for use in statistical modeling. Smoothing is the process of removing random variations that appear as coarseness in a plot of raw time series data. It reduces the noise to emphasize the signal that can contain trends and cycles. Analysts also refer to the smoothing process as filtering the data. [Read more…] about Using Moving Averages to Smooth Time Series Data

Filed Under: Time Series Tagged With: analysis example, conceptual, Excel

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Interim pages omitted …
  • Go to page 7
  • Go to Next Page »

Primary Sidebar

Meet Jim

I’ll help you intuitively understand statistics by focusing on concepts and using plain English so you can concentrate on understanding your results.

Read More…

Buy My Introduction to Statistics eBook!

New! Buy My Hypothesis Testing eBook!

Buy My Regression eBook!

Subscribe by Email

Enter your email address to receive notifications of new posts by email.

    I won't send you spam. Unsubscribe at any time.

    Follow Me

    • FacebookFacebook
    • RSS FeedRSS Feed
    • TwitterTwitter
    • Popular
    • Latest
    Popular
    • How To Interpret R-squared in Regression Analysis
    • How to Interpret P-values and Coefficients in Regression Analysis
    • Measures of Central Tendency: Mean, Median, and Mode
    • Normal Distribution in Statistics
    • Multicollinearity in Regression Analysis: Problems, Detection, and Solutions
    • How to Interpret the F-test of Overall Significance in Regression Analysis
    • Understanding Interaction Effects in Statistics
    Latest
    • Chebyshev’s Theorem in Statistics
    • Using Permutations to Calculate Probabilities
    • Understanding Historians’ Rankings of U.S. Presidents using Regression Models
    • Spearman’s Correlation Explained
    • Effect Sizes in Statistics
    • Proxy Variables: The Good Twin of Confounding Variables
    • Multiplication Rule for Calculating Probabilities

    Recent Comments

    • Jim Frost on Understanding Historians’ Rankings of U.S. Presidents using Regression Models
    • Tony on Understanding Historians’ Rankings of U.S. Presidents using Regression Models
    • Jim Frost on Time Series Analysis Introduction
    • Jim Frost on Curve Fitting using Linear and Nonlinear Regression
    • Jim Frost on Using Post Hoc Tests with ANOVA

    Copyright © 2021 · Jim Frost · Privacy Policy