• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar
  • My Store
  • Glossary
  • Home
  • About Me
  • Contact Me

Statistics By Jim

Making statistics intuitive

  • Graphs
  • Basics
  • Hypothesis Testing
  • Regression
  • ANOVA
  • Probability
  • Time Series
  • Fun

Standard error of the regression

By Jim Frost

The standard error of the regression (S), also known as the standard error of the estimate, represents the average distance that the observed values fall from the regression line. Conveniently, it tells you how wrong the regression model is on average using the units of the response variable. Smaller values are better because it indicates that the observations are closer to the fitted line.

Unlike R-squared, you can use the standard error of the regression to assess the precision of the predictions. Approximately 95% of the observations should fall within plus/minus 2*standard error of the regression from the regression line, which is also a quick approximation of a 95% prediction interval. If want to use a regression model to make predictions, assessing the standard error of the regression might be more important than assessing R-squared.

Related

Related Articles:
  • Standard Error of the Regression vs. R-squared
  • How To Interpret R-squared in Regression Analysis
  • Curve Fitting using Linear and Nonlinear Regression
  • Regression Tutorial with Analysis Examples
  • Glossary: Correlation
  • Glossary: Statistics

Primary Sidebar

Meet Jim

I’ll help you intuitively understand statistics by focusing on concepts and using plain English so you can concentrate on understanding your results.

Read More...

Buy My Introduction to Statistics Book!

Cover of my Introduction to Statistics: An Intuitive Guide ebook.

Buy My Hypothesis Testing Book!

Cover image of my Hypothesis Testing: An Intuitive Guide ebook.

Buy My Regression Book!

Cover for my ebook, Regression Analysis: An Intuitive Guide for Using and Interpreting Linear Models.

Subscribe by Email

Enter your email address to receive notifications of new posts by email.

    I won't send you spam. Unsubscribe at any time.

    Follow Me

    • FacebookFacebook
    • RSS FeedRSS Feed
    • TwitterTwitter

    Top Posts

    • How to Interpret P-values and Coefficients in Regression Analysis
    • How To Interpret R-squared in Regression Analysis
    • Multicollinearity in Regression Analysis: Problems, Detection, and Solutions
    • Mean, Median, and Mode: Measures of Central Tendency
    • How to Find the P value: Process and Calculations
    • How to do t-Tests in Excel
    • Z-table
    • Choosing the Correct Type of Regression Analysis
    • One-Tailed and Two-Tailed Hypothesis Tests Explained
    • How to Interpret the F-test of Overall Significance in Regression Analysis

    Recent Posts

    • Slope Intercept Form of Linear Equations: A Guide
    • Population vs Sample: Uses and Examples
    • How to Calculate a Percentage
    • Control Chart: Uses, Example, and Types
    • Monte Carlo Simulation: Make Better Decisions
    • Principal Component Analysis Guide & Example

    Recent Comments

    • Jim Frost on Monte Carlo Simulation: Make Better Decisions
    • Gilberto on Monte Carlo Simulation: Make Better Decisions
    • Sultan Mahmood on Linear Regression Equation Explained
    • Sanjay Kumar P on What is the Mean and How to Find It: Definition & Formula
    • Dave on Control Variables: Definition, Uses & Examples

    Copyright © 2023 · Jim Frost · Privacy Policy