P-values and coefficients in regression analysis work together to tell you which relationships in your model are statistically significant and the nature of those relationships. The coefficients describe the mathematical relationship between each independent variable and the dependent variable. The p-values for the coefficients indicate whether these relationships are statistically significant. [Read more…] about How to Interpret P-values and Coefficients in Regression Analysis

# Blog

## Nonparametric Tests vs. Parametric Tests

Nonparametric tests don’t require that your data follow the normal distribution. They’re also known as distribution-free tests and can provide benefits in certain situations. Typically, people who perform statistical hypothesis tests are more comfortable with parametric tests than nonparametric tests.

You’ve probably heard it’s best to use nonparametric tests if your data are not normally distributed—or something along these lines. That seems like an easy way to choose, but there’s more to the decision than that. [Read more…] about Nonparametric Tests vs. Parametric Tests

## How Hypothesis Tests Work: Confidence Intervals and Confidence Levels

A confidence interval is calculated from a sample and provides a range of values that likely contains the unknown value of a population parameter. In this post, I demonstrate how confidence intervals and confidence levels work using graphs and concepts instead of formulas. In the process, you’ll see how confidence intervals are very similar to P values and significance levels. [Read more…] about How Hypothesis Tests Work: Confidence Intervals and Confidence Levels

## R-squared Is Not Valid for Nonlinear Regression

Nonlinear regression is an extremely flexible analysis that can fit most any curve that is present in your data. R-squared seems like a very intuitive way to assess the goodness-of-fit for a regression model. Unfortunately, the two just don’t go together. R-squared is invalid for nonlinear regression. [Read more…] about R-squared Is Not Valid for Nonlinear Regression

## How to Interpret Adjusted R-Squared and Predicted R-Squared in Regression Analysis

R-squared tends to reward you for including too many independent variables in a regression model, and it doesn’t provide any incentive to stop adding more. Adjusted R-squared and predicted R-squared use different approaches to help you fight that impulse to add too many. The protection that adjusted R-squared and predicted R-squared provide is critical because too many terms in a model can produce results that you can’t trust. These statistics help you include the correct number of independent variables in your regression model. [Read more…] about How to Interpret Adjusted R-Squared and Predicted R-Squared in Regression Analysis

## How t-Tests Work: t-Values, t-Distributions, and Probabilities

T-tests are statistical hypothesis tests that you use to analyze one or two sample means. Depending on the t-test that you use, you can compare a sample mean to a hypothesized value, the means of two independent samples, or the difference between paired samples. In this post, I show you how t-tests use t-values and t-distributions to calculate probabilities and test hypotheses.

As usual, I’ll provide clear explanations of t-values and t-distributions using concepts and graphs rather than formulas! If you need a primer on the basics, read my hypothesis testing overview. [Read more…] about How t-Tests Work: t-Values, t-Distributions, and Probabilities

## How t-Tests Work: 1-sample, 2-sample, and Paired t-Tests

T-tests are statistical hypothesis tests that analyze one or two sample means. When you analyze your data with any t-test, the procedure reduces your entire sample to a single value, the t-value. In this post, I describe how each type of t-test calculates the t-value. I don’t explain this just so you can understand the calculation, but I describe it in a way that really helps you grasp how t-tests work. [Read more…] about How t-Tests Work: 1-sample, 2-sample, and Paired t-Tests

## How to Interpret the Constant (Y Intercept) in Regression Analysis

The constant term in regression analysis is the value at which the regression line crosses the y-axis. The constant is also known as the y-intercept. That sounds simple enough, right? Mathematically, the regression constant really is that simple. However, the difficulties begin when you try to interpret the *meaning* of the y-intercept in your regression output. [Read more…] about How to Interpret the Constant (Y Intercept) in Regression Analysis

## How F-tests work in Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) uses F-tests to statistically assess the equality of means when you have three or more groups. In this post, I’ll answer several common questions about the F-test.

- How do F-tests work?
- Why do we analyze
*variances*to test*means*?

I’ll use concepts and graphs to answer these questions about F-tests in the context of a one-way ANOVA example. I’ll use the same approach that I use to explain how t-tests work. If you need a primer on the basics, read my hypothesis testing overview. [Read more…] about How F-tests work in Analysis of Variance (ANOVA)

## Check Your Residual Plots to Ensure Trustworthy Regression Results!

Use residual plots to check the assumptions of an OLS linear regression model. If you violate the assumptions, you risk producing results that you can’t trust. Residual plots display the residual values on the y-axis and fitted values, or another variable, on the x-axis. After you fit a regression model, it is crucial to check the residual plots. If your plots display unwanted patterns, you can’t trust the regression coefficients and other numeric results.

In this post, I explain the conceptual reasons why residual plots help ensure that your regression model is valid. I’ll also show you what to look for and how to fix the problems. [Read more…] about Check Your Residual Plots to Ensure Trustworthy Regression Results!

## How to Interpret the F-test of Overall Significance in Regression Analysis

The F-test of overall significance indicates whether your linear regression model provides a better fit to the data than a model that contains no independent variables. In this post, I look at how the F-test of overall significance fits in with other regression statistics, such as R-squared. R-squared tells you how well your model fits the data, and the F-test is related to it. [Read more…] about How to Interpret the F-test of Overall Significance in Regression Analysis

## Multicollinearity in Regression Analysis: Problems, Detection, and Solutions

Multicollinearity occurs when independent variables in a regression model are correlated. This correlation is a problem because independent variables should be *independent*. If the degree of correlation between variables is high enough, it can cause problems when you fit the model and interpret the results. [Read more…] about Multicollinearity in Regression Analysis: Problems, Detection, and Solutions

## Benefits of Welch’s ANOVA Compared to the Classic One-Way ANOVA

Welch’s ANOVA is an alternative to the traditional analysis of variance (ANOVA) and it offers some serious benefits. One-way ANOVA determines whether differences between the means of at least three groups are statistically significant. For decades, introductory statistics classes have taught the classic Fishers one-way ANOVA that uses the F-test. It’s a standard statistical analysis, and you might think it’s pretty much set in stone by now. Surprise, there’s a significant change occurring in the world of one-way ANOVA! [Read more…] about Benefits of Welch’s ANOVA Compared to the Classic One-Way ANOVA

## When is Easter this Year?

When is Easter this year? I ask this question every year! This year, Easter occurs on April 16, 2017. Next year, Easter falls on April 1, 2018. I have a hard time remembering when it occurs in any given year. I think that March Easters are both early and unusual. Is that true?

Being a statistician, my first thought is to study the distribution of Easter dates. By analyzing the distribution, we can determine which dates are rare and which are common. How unusual are Easter dates in March? Are there patterns in the dates? [Read more…] about When is Easter this Year?

## How to Analyze Likert Scale Data

How do you analyze Likert scale data? Likert scales are the most broadly used method for scaling responses in survey studies. Survey questions that ask you to indicate your level of agreement, from strongly agree to strongly disagree, use the Likert scale. The data in the worksheet are five-point Likert scale data for two groups. [Read more…] about How to Analyze Likert Scale Data

## The Difference between Linear and Nonlinear Regression Models

The difference between linear and nonlinear regression models isn’t as straightforward as it sounds. You’d think that linear equations produce straight lines and nonlinear equations model curvature. Unfortunately, that’s *not* correct. Both types of models can fit curves to your data—so that’s not the defining characteristic. In this post, I’ll teach you how to identify linear and nonlinear regression models. [Read more…] about The Difference between Linear and Nonlinear Regression Models

## Standard Error of the Regression vs. R-squared

The standard error of the regression (S) and R-squared are two key goodness-of-fit measures for regression analysis. While R-squared is the most well-known amongst the goodness-of-fit statistics, I think it is a bit over-hyped. [Read more…] about Standard Error of the Regression vs. R-squared

## Chi-Square Test of Independence and an Example

The Chi-square test of independence determines whether there is a statistically significant relationship between categorical variables. It is a hypothesis test that answers the question—do the values of one categorical variable depend on the value of other categorical variables? [Read more…] about Chi-Square Test of Independence and an Example

## Multivariate ANOVA (MANOVA) Benefits and When to Use It

Multivariate ANOVA (MANOVA) extends the capabilities of analysis of variance (ANOVA) by assessing multiple dependent variables simultaneously. ANOVA statistically tests the differences between three or more group means. For example, if you have three different teaching methods and you want to evaluate the average scores for these groups, you can use ANOVA. However, ANOVA does have a drawback. It can assess only one dependent variable at a time. This limitation can be an enormous problem in certain circumstances because it can prevent you from detecting effects that actually exist. [Read more…] about Multivariate ANOVA (MANOVA) Benefits and When to Use It

## Repeated Measures Designs: Benefits and an ANOVA Example

Repeated measures designs, also known as a within-subjects designs, can seem like oddball experiments. When you think of a typical experiment, you probably picture an experimental design that uses mutually exclusive, independent groups. These experiments have a control group and treatment groups that have clear divisions between them. Each subject is in only one of these groups. [Read more…] about Repeated Measures Designs: Benefits and an ANOVA Example